Ancient DNA from the Asiatic Wild Dog (Cuon alpinus) from Europe
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
310763
European Research Council - International
PubMed
33499169
PubMed Central
PMC7911384
DOI
10.3390/genes12020144
PII: genes12020144
Knihovny.cz E-zdroje
- Klíčová slova
- Cuon alpinus, ancient DNA, canids, dhole, hybridisation capture, mitogenome,
- MeSH
- Canidae anatomie a histologie klasifikace genetika MeSH
- fylogeneze * MeSH
- genom mitochondriální MeSH
- hybridizace genetická MeSH
- migrace zvířat MeSH
- mitochondriální DNA MeSH
- starobylá DNA * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- mitochondriální DNA MeSH
- starobylá DNA * MeSH
The Asiatic wild dog (Cuon alpinus), restricted today largely to South and Southeast Asia, was widespread throughout Eurasia and even reached North America during the Pleistocene. Like many other species, it suffered from a huge range loss towards the end of the Pleistocene and went extinct in most of its former distribution. The fossil record of the dhole is scattered and the identification of fossils can be complicated by an overlap in size and a high morphological similarity between dholes and other canid species. We generated almost complete mitochondrial genomes for six putative dhole fossils from Europe. By using three lines of evidence, i.e., the number of reads mapping to various canid mitochondrial genomes, the evaluation and quantification of the mapping evenness along the reference genomes and phylogenetic analysis, we were able to identify two out of six samples as dhole, whereas four samples represent wolf fossils. This highlights the contribution genetic data can make when trying to identify the species affiliation of fossil specimens. The ancient dhole sequences are highly divergent when compared to modern dhole sequences, but the scarcity of dhole data for comparison impedes a more extensive analysis.
Department of Biological Sciences University at Albany 1400 Washington Avenue Albany NY 12222 USA
Department of Genetics and Genome Biology University of Leicester Leicester LE1 7RH UK
Emil Racoviţă Institute of Speleology Romanian Academy 31 Frumoasă Street 010986 Bucharest Romania
Moravian Museum Anthropos Institute Zelný trh 6 65937 Brno Czech Republic
School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
Zobrazit více v PubMed
Brown O.J.F. Tasmanian Devil (Sarcophilus harrisii) Extinction on the Australian Mainland in the Mid-Holocene: Multicausality and ENSO Intensification. Alcheringa Australas. J. Palaeontol. 2006;30:49–57. doi: 10.1080/03115510609506855. DOI
Paijmans J.L.A., Barlow A., Förster D.W., Henneberger K., Meyer M., Nickel B., Nagel D., Worsøe Havmøller R., Baryshnikov G.F., Joger U., et al. Historical Biogeography of the Leopard (Panthera pardus) and Its Extinct Eurasian Populations. BMC Evol. Biol. 2018;18:156. doi: 10.1186/s12862-018-1268-0. PubMed DOI PMC
Kurtén B. Pleistocene Mammals of Europe. Weidenfeld and Nicolson; London, UK: 1968.
Baryshnikov G. The Dhole, Cuon alpinus (Carnivora, Canidae), from the Upper Pleistocene of the Caucasus. Acta Zool. Crac. 1996;39:67–73.
Ghezzo E., Rook L. Cuon alpinus (Pallas, 1811) (Mammalia, Carnivora) from Equi (Late Pleistocene, Massa—Carrara, Italy): Anatomical Analysis and Palaeoethological Contextualisation. Rend. Fis. Acc. Lincei. 2014;25:491–504. doi: 10.1007/s12210-014-0345-6. DOI
Kurtén B., Anderson E. Pleistocene Mammals of North America. Columbia University Press; New York, NY, USA: 1980.
Petrucci M., Romiti S., Sardella R. The Middle-Late Pleistocene Cuon Hodgson, 1838 (Carnivora, Canidae) from Italy. Bollettino della Societa Paleontologica Italiana. 2012;51:137–148. doi: 10.4435/BSPI.2012.15. DOI
Pérez Ripoll M., Morales Pérez J.V., Sanchis Serra A., Aura Tortosa J.E., Montañana I.S. Presence of the Genus Cuon in Upper Pleistocene and Initial Holocene Sites of the Iberian Peninsula: New Remains Identified in Archaeological Contexts of the Mediterranean Region. J. Archaeol. Sci. 2010;37:437–450. doi: 10.1016/j.jas.2009.10.008. DOI
Tedford R.H., Wang X., Taylor B.E. Phylogenetic Systematics of the North American Fossil Caninae (Carnivora: Canidae) Bull. Am. Mus. Nat. Hist. 2009:1–218. doi: 10.1206/574.1. DOI
Thenius E. Zur Abstammung Der Rotwölfe (Gattung Cuon HODGSON) Österr. Zool. Z. 1954;5:377–387.
Wang X., Tedford R.H. Dogs: Their Fossil Relatives and Evolutionary History. Columbia University Press; New York, NY, USA: 2008.
Cohen J.A. Cuon alpinus. Mamm. Species. 1978:1–3. doi: 10.2307/3503800. DOI
Durbin L.S., Venkataraman A., Hedges S., Duckworth W. Dhole (Cuon alpinus) In: Hoffmann M., Macdonald D.W., Sillero-Zubiri C., editors. Canids: Foxes, Wolves, Jackals and Dogs. Status Suvey and Conservation Action Plan. IUCN; Gland, Switzerland: Cambridge, UK: 2004. pp. 210–219. IUCN/SSC Action Plans for the Conservation of Biological Diversity.
Kamler J.F., Songsasen N., Jenks K., Srivathsa A., Sheng L., Kunkel K. Cuon alpinus. IUCN; Gland, Switzerland: 2015. The IUCN Red List of Threatened Species 2015: E.T5953A72477893.
Gopalakrishnan S., Sinding M.-H.S., Ramos-Madrigal J., Niemann J., Samaniego Castruita J.A., Vieira F.G., Carøe C., Montero M.d.M., Kuderna L., Serres A., et al. Interspecific Gene Flow Shaped the Evolution of the Genus Canis. Curr. Biol. 2018;28:3441–3449.e5. doi: 10.1016/j.cub.2018.08.041. PubMed DOI PMC
Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K., Jaffe D.B., Kamal M., Clamp M., Chang J.L., Kulbokas E.J., Zody M.C., et al. Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic Dog. Nature. 2005;438:803–819. doi: 10.1038/nature04338. PubMed DOI
Wayne R.K., Geffen E., Girman D.J., Koepfli K.P., Lau L.M., Marshall C.R. Molecular Systematics of the Canidae. Syst. Biol. 1997;46:622–653. doi: 10.1093/sysbio/46.4.622. PubMed DOI
Zhang H., Chen L. The Complete Mitochondrial Genome of Dhole Cuon alpinus: Phylogenetic Analysis and Dating Evolutionary Divergence within Canidae. Mol. Biol. Rep. 2011;38:1651–1660. doi: 10.1007/s11033-010-0276-y. PubMed DOI
Bardeleben C., Moore R.L., Wayne R.K. A Molecular Phylogeny of the Canidae Based on Six Nuclear Loci. Mol. Phylogenetics Evol. 2005;37:815–831. doi: 10.1016/j.ympev.2005.07.019. PubMed DOI
Chen L., Zhang H., Zhang J., Zhao C., Sha W. The Complete Mitochondrial Genome of Cuon alpinus lepturus. Mitochondrial DNA. 2015;26:767–768. doi: 10.3109/19401736.2013.855742. PubMed DOI
Iyengar A., Babu V.N., Hedges S., Venkataraman A.B., Maclean N., Morin P.A. Phylogeography, Genetic Structure, and Diversity in the Dhole (Cuon alpinus) Mol. Ecol. 2005;14:2281–2297. doi: 10.1111/j.1365-294X.2005.02582.x. PubMed DOI
Koepfli K.-P., Pollinger J., Godinho R., Robinson J., Lea A., Hendricks S., Schweizer R.M., Thalmann O., Silva P., Fan Z., et al. Genome-Wide Evidence Reveals That African and Eurasian Golden Jackals Are Distinct Species. Curr. Biol. 2015;25:2158–2165. doi: 10.1016/j.cub.2015.06.060. PubMed DOI
Sheldon J.W. Wild Dogs: The Natural History of the Non-Domestic Canidae. 1st ed. Academic Press Inc.; San Diego, CA, USA: 1992.
Baryshnikov G.F. Pleistocene Canidae (Mammalia, Carnivora) from the Paleolithic Kudaro Caves in the Caucasus. Russ. J. Theriol. 2012;11:71–120. doi: 10.15298/rusjtheriol.11.2.01. DOI
Stehlík A. Cuon auropaeus Bourguignat z Plistocenních Usazenin Jeskyně Jáchymky v Josefském Údolí u Adamova. Práce Moravské Přírodověckě Společnosti. 1944;16:1–21.
Wiszniowska T. Excavation in the Bacho Kiro Cave (Bulgaria). Final Report. Państwowe Wydawnictwo Naukowe; Warszawa, Poland: 1982. Carnivora; pp. 52–55.
Drăgușin V., Vasile Ș., Terhune C., Petculescu A., Robu M., Vlaicu M., Constantin S., Știucă E., Taron U.H., Hofreiter M., et al. Late Pleistocene Occurrence of Cuon alpinus in Romania. In: Lazăr I., Grădinaru M., Vasile Ș., editors. Proceedings of the Eleventh Romanian Symposium on Palaeontology; Bucharest, Romania. 27–28 September 2017; Bucharest, Romania: University of Bucharest; p. 27.
Hublin J.-J. The Modern Human Colonization of Western Eurasia: When and Where? Quat. Sci. Rev. 2015;118:194–210. doi: 10.1016/j.quascirev.2014.08.011. DOI
Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J.A.M. Primer3Plus, an Enhanced Web Interface to Primer3. Nucleic Acids Res. 2007;35:W71–W74. doi: 10.1093/nar/gkm306. PubMed DOI PMC
Henneberger K., Barlow A., Paijmans J.L.A. Double-Stranded Library Preparation for Ancient and Other Degraded Samples. Methods Mol. Biol. 2019;1963:65–73. doi: 10.1007/978-1-4939-9176-1_8. PubMed DOI
Dabney J., Knapp M., Glocke I., Gansauge M.-T., Weihmann A., Nickel B., Valdiosera C., García N., Pääbo S., Arsuaga J.-L., et al. Complete Mitochondrial Genome Sequence of a Middle Pleistocene Cave Bear Reconstructed from Ultrashort DNA Fragments. Proc. Natl. Acad. Sci. USA. 2013;110:15758–15763. doi: 10.1073/pnas.1314445110. PubMed DOI PMC
Gansauge M.-T., Meyer M. Single-Stranded DNA Library Preparation for the Sequencing of Ancient or Damaged DNA. Nat. Protoc. 2013;8:737–748. doi: 10.1038/nprot.2013.038. PubMed DOI
Korlević P., Gerber T., Gansauge M.-T., Hajdinjak M., Nagel S., Aximu-Petri A., Meyer M. Reducing Microbial and Human Contamination in DNA Extractions from Ancient Bones and Teeth. BioTechniques. 2015;59:87–93. doi: 10.2144/000114320. PubMed DOI
González Fortes G., Paijmans J.L.A. Whole-Genome Capture of Ancient DNA Using Homemade Baits. In: Shapiro B., Barlow A., Heintzman P.D., Hofreiter M., Paijmans J.L.A., Soares A.E.R., editors. Ancient DNA: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 93–105. Methods in Molecular Biology. PubMed
Paijmans J.L.A., Baleka S., Henneberger K., Taron U.H., Trinks A., Westbury M.V., Barlow A. Sequencing Single-Stranded Libraries on the Illumina NextSeq 500 Platform. arXiv. 20171711.11004
Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Magoč T., Salzberg S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics. 2011;27:2957–2963. doi: 10.1093/bioinformatics/btr507. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Li H., Durbin R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Freedman A.H., Gronau I., Schweizer R.M., Vecchyo D.O.-D., Han E., Silva P.M., Galaverni M., Fan Z., Marx P., Lorente-Galdos B., et al. Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genet. 2014;10:e1004016. doi: 10.1371/journal.pgen.1004016. PubMed DOI PMC
García-García G., Baux D., Faugère V., Moclyn M., Koenig M., Claustres M., Roux A.-F. Assessment of the Latest NGS Enrichment Capture Methods in Clinical Context. Sci. Rep. 2016;6:20948. doi: 10.1038/srep20948. PubMed DOI PMC
Mokry M., Feitsma H., Nijman I.J., de Bruijn E., van der Zaag P.J., Guryev V., Cuppen E. Accurate SNP and Mutation Detection by Targeted Custom Microarray-Based Genomic Enrichment of Short-Fragment Sequencing Libraries. Nucleic Acids Res. 2010;38:e116. doi: 10.1093/nar/gkq072. PubMed DOI PMC
Gnirke A., Melnikov A., Maguire J., Rogov P., LeProust E.M., Brockman W., Fennell T., Giannoukos G., Fisher S., Russ C., et al. Solution Hybrid Selection with Ultra-Long Oligonucleotides for Massively Parallel Targeted Sequencing. Nat. Biotechnol. 2009;27:182–189. doi: 10.1038/nbt.1523. PubMed DOI PMC
Jónsson H., Ginolhac A., Schubert M., Johnson P.L.F., Orlando L. MapDamage2.0: Fast Approximate Bayesian Estimates of Ancient DNA Damage Parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Urios V., Donat-Torres M.P., Ramírez C., Monroy-Vilchis O., Rgribi-Idrissi H. El Análisis Del Genoma Mitocondrial Del Cánido Estudiado En Marruecos Manifiesta Que No Es Ni Lobo (Canis lupus) Ni Chacal Euroasiático (Canis Aureus) AltoterO. 2015;3:2–15.
Björnerfeldt S., Webster M.T., Vilà C. Relaxation of Selective Constraint on Dog Mitochondrial DNA Following Domestication. Genome Res. 2006;16:990–994. doi: 10.1101/gr.5117706. PubMed DOI PMC
Pang J.-F., Kluetsch C., Zou X.-J., Zhang A., Luo L.-Y., Angleby H., Ardalan A., Ekström C., Sköllermo A., Lundeberg J., et al. MtDNA Data Indicate a Single Origin for Dogs South of Yangtze River, Less than 16,300 Years Ago, from Numerous Wolves. Mol. Biol. Evol. 2009;26:2849–2864. doi: 10.1093/molbev/msp195. PubMed DOI PMC
Thalmann O., Shapiro B., Cui P., Schuenemann V.J., Sawyer S.K., Greenfield D.L., Germonpré M.B., Sablin M.V., López-Giráldez F., Domingo-Roura X., et al. Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science. 2013;342:871–874. doi: 10.1126/science.1243650. PubMed DOI
Arnason U., Gullberg A., Janke A., Kullberg M. Mitogenomic Analyses of Caniform Relationships. Mol. Phylogenetics Evol. 2007;45:863–874. doi: 10.1016/j.ympev.2007.06.019. PubMed DOI
Campana M.G., Parker L.D., Hawkins M.T.R., Young H.S., Helgen K.M., Szykman Gunther M., Woodroffe R., Maldonado J.E., Fleischer R.C. Genome Sequence, Population History, and Pelage Genetics of the Endangered African Wild Dog (Lycaon pictus) BMC Genom. 2016;17:1013. doi: 10.1186/s12864-016-3368-9. PubMed DOI PMC
Kazuno A.-A., Munakata K., Mori K., Tanaka M., Nanko S., Kunugi H., Umekage T., Tochigi M., Kohda K., Sasaki T., et al. Mitochondrial DNA Sequence Analysis of Patients with ‘Atypical Psychosis’. Psychiatry Clin. Neurosci. 2005;59:497–503. doi: 10.1111/j.1440-1819.2005.01404.x. PubMed DOI
Hofman C.A., Rick T.C., Hawkins M.T.R., Funk W.C., Ralls K., Boser C.L., Collins P.W., Coonan T., King J.L., Morrison S.A., et al. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis) PLoS ONE. 2015;10:e0118240. doi: 10.1371/journal.pone.0118240. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Darriba D., Taboada G.L., Doallo R., Posada D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Guindon S., Gascuel O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Yuan J.-X., Hou X.-D., Barlow A., Preick M., Taron U.H., Alberti F., Basler N., Deng T., Lai X.-L., Hofreiter M., et al. Molecular Identification of Late and Terminal Pleistocene Equus ovodovi from Northeastern China. PLoS ONE. 2019;14:e0216883. doi: 10.1371/journal.pone.0216883. PubMed DOI PMC
Bandelt H.J., Forster P., Röhl A. Median-Joining Networks for Inferring Intraspecific Phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Leigh J.W., Bryant D. Popart: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Briggs A.W., Stenzel U., Johnson P.L.F., Green R.E., Kelso J., Prüfer K., Meyer M., Krause J., Ronan M.T., Lachmann M., et al. Patterns of Damage in Genomic DNA Sequences from a Neandertal. Proc. Natl. Acad. Sci. USA. 2007;104:14616–14621. doi: 10.1073/pnas.0704665104. PubMed DOI PMC
Meyer M., Kircher M., Gansauge M.-T., Li H., Racimo F., Mallick S., Schraiber J.G., Jay F., Prüfer K., de Filippo C., et al. A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science. 2012;338:222–226. doi: 10.1126/science.1224344. PubMed DOI PMC
Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Paijmans J.L.A., Barnett R., Gilbert M.T.P., Zepeda-Mendoza M.L., Reumer J.W.F., de Vos J., Zazula G., Nagel D., Baryshnikov G.F., Leonard J.A., et al. Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics. Curr. Biol. 2017;27:3330–3336.e5. doi: 10.1016/j.cub.2017.09.033. PubMed DOI
Krause J., Fu Q., Good J.M., Viola B., Shunkov M.V., Derevianko A.P., Pääbo S. The Complete Mitochondrial DNA Genome of an Unknown Hominin from Southern Siberia. Nature. 2010;464:894–897. doi: 10.1038/nature08976. PubMed DOI PMC
Grealy A.C., McDowell M.C., Scofield P., Murray D.C., Fusco D.A., Haile J., Prideaux G.J., Bunce M. A Critical Evaluation of How Ancient DNA Bulk Bone Metabarcoding Complements Traditional Morphological Analysis of Fossil Assemblages. Quat. Sci. Rev. 2015;128:37–47. doi: 10.1016/j.quascirev.2015.09.014. DOI
Murray D.C., Haile J., Dortch J., White N.E., Haouchar D., Bellgard M.I., Allcock R.J., Prideaux G.J., Bunce M. Scrapheap Challenge: A Novel Bulk-Bone Metabarcoding Method to Investigate Ancient DNA in Faunal Assemblages. Sci. Rep. 2013;3:3371. doi: 10.1038/srep03371. PubMed DOI PMC
Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. A Plea for DNA Taxonomy. Trends Ecol. Evol. 2003;18:70–74. doi: 10.1016/S0169-5347(02)00041-1. DOI
Basler N., Xenikoudakis G., Westbury M.V., Song L., Sheng G., Barlow A. Reduction of the Contaminant Fraction of DNA Obtained from an Ancient Giant Panda Bone. BMC Res. Notes. 2017;10:754. doi: 10.1186/s13104-017-3061-3. PubMed DOI PMC
Taron U.H., Lell M., Barlow A., Paijmans J.L.A. Testing of Alignment Parameters for Ancient Samples: Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool. Genes. 2018;9:157. doi: 10.3390/genes9030157. PubMed DOI PMC
Paijmans J.L.A., Fickel J., Courtiol A., Hofreiter M., Förster D.W. Impact of Enrichment Conditions on Cross-Species Capture of Fresh and Degraded DNA. Mol. Ecol. Resour. 2016;16:42–55. doi: 10.1111/1755-0998.12420. PubMed DOI
Paijmans J.L.A., Barlow A., Henneberger K., Fickel J., Hofreiter M., Foerster D.W.G. Ancestral Mitogenome Capture of the Southeast Asian Banded Linsang. PLoS ONE. 2020;15:e0234385. doi: 10.1371/journal.pone.0234385. PubMed DOI PMC
Martinez P.A., Zurano J.P., Molina W.F., Bidau C.J. Applications and Implications of Phylogeography for Canid Conservation. Mastozoología Neotropical. 2013;20:61–74.
Hailer F., Leonard J.A. Hybridization among Three Native North American Canis Species in a Region of Natural Sympatry. PLoS ONE. 2008;3:e3333. doi: 10.1371/journal.pone.0003333. PubMed DOI PMC
Wang G.-D., Zhang M., Wang X., Yang M.A., Cao P., Liu F., Lu H., Feng X., Skoglund P., Wang L., et al. Genomic Approaches Reveal an Endemic Subpopulation of Gray Wolves in Southern China. iScience. 2019;20:110–118. doi: 10.1016/j.isci.2019.09.008. PubMed DOI PMC
Ehrlinger S., Zenger K. Quartär: Internationales Jahrbuch zur Eiszeitalter- und Steinzeitforschung/International Yearbook for Ice Age and Stone Age Research. Volume 49–50. Verlag Marie Leidorf GmbH; Rahden, Germany: 1999. Ein Cuon-Fund Aus Der Zoolithenhöhle—Morphologische Und Biostatistische Studien Unter Verwendung Einer ACCESS-Datenbank; pp. 55–86.
Nehring A. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie. Volume 2. E. Schweizerbart’sche Verlagshandlung; Stuttgart, Germany: 1890. Über Cuon alpinus fossilis nebst Bemerkungen über einige andere fossile Caniden; pp. 34–52.
Buchalczyk T., Dynowski J., Szteyn S. Variations in Number of Teeth and Asymmetry of the Skull in the Wolf. Acta Theriol. 1981;26:23–30. doi: 10.4098/AT.arch.81-2. DOI
Andersone Z., Ozolins J. Craniometrical Characteristics and Dental Anomalies in Wolves Canis lupus from Latvia. Acta Theriol. 2000;45:549–558. doi: 10.4098/AT.arch.00-53. DOI
Mallye J.-B., Costamagno S., Boudadi-Maligne M., Prucca A., Lauroulandie C. Dhole (Cuon alpinus) as a bone accumulator and new taphonomy agent? The case of Noisetier cave (French Pyrenees) J. Taphon. 2012;10:317–347.
Baryshnikov G.F. Late Pleistocene Canidae Remains from Geographical Society Cave in the Russian Far East. Russ. J. Theriol. 2015;14:65–83. doi: 10.15298/rusjtheriol.14.1.03. DOI
Liu W., Wu X., Pei S., Wu X., Norton C.J. Huanglong Cave: A Late Pleistocene Human Fossil Site in Hubei Province, China. Quat. Int. 2010;211:29–41. doi: 10.1016/j.quaint.2009.06.017. DOI
Qinqi X. Some remarks on Chenjiawo fauna-On the First Appearance of Peking Man Fauna. Vertebr. Pal Asiatica. 1996;34:41–57.
Weiwen H., Xinqiang S., Yamei H., Miller-Antonio S., Schepartz L.A. Excavations at Panxian Dadong, Guizhou Province, Southern China. Curr. Anthropol. 1995;36:844–846. doi: 10.1086/204441. DOI
Suraprasit K., Jaeger J.-J., Chaimanee Y., Chavasseau O., Yamee C., Tian P., Panha S. The Middle Pleistocene Vertebrate Fauna from Khok Sung (Nakhon Ratchasima, Thailand): Biochronological and Paleobiogeographical Implications. Zookeys. 2016:1–157. doi: 10.3897/zookeys.613.8309. PubMed DOI PMC
Long V.T., de Vos J., Ciochon R.L. The Fossil Mammal Fauna of the Lang Trang Caves, Vietnam, Compared with Southeast Asian Fossil and Recent Mammal Faunas: The Geographic Implications. Bull. Indo-Pac. Prehistory Assoc. 1996;14:101–109.
Hofreiter M. Long DNA Sequences and Large Data Sets: Investigating the Quaternary via Ancient DNA. Quat. Sci. Rev. 2008;27:2586–2592. doi: 10.1016/j.quascirev.2008.09.012. DOI
Hofreiter M., Barnes I. Diversity Lost: Are All Holarctic Large Mammal Species Just Relict Populations? BMC Biol. 2010;8:46. doi: 10.1186/1741-7007-8-46. PubMed DOI PMC
De Bruyn M., Hoelzel A.R., Carvalho G.R., Hofreiter M. Faunal Histories from Holocene Ancient DNA. Trends Ecol. Evol. 2011;26:405–413. doi: 10.1016/j.tree.2011.03.021. PubMed DOI
Leonard J.A., Vilà C., Fox-Dobbs K., Koch P.L., Wayne R.K., Van Valkenburgh B. Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph. Curr. Biol. 2007;17:1146–1150. doi: 10.1016/j.cub.2007.05.072. PubMed DOI
Pilot M., Branicki W., Jędrzejewski W., Goszczyński J., Jędrzejewska B., Dykyy I., Shkvyrya M., Tsingarska E. Phylogeographic History of Grey Wolves in Europe. BMC Evol. Biol. 2010;10:104. doi: 10.1186/1471-2148-10-104. PubMed DOI PMC
Sheng G.-L., Barlow A., Cooper A., Hou X.-D., Ji X.-P., Jablonski N.G., Zhong B.-J., Liu H., Flynn L.J., Yuan J.-X., et al. Ancient DNA from Giant Panda (Ailuropoda melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene. Genes. 2018;9:198. doi: 10.3390/genes9040198. PubMed DOI PMC
Metcalf J.L., Turney C., Barnett R., Martin F., Bray S.C., Vilstrup J.T., Orlando L., Salas-Gismondi R., Loponte D., Medina M., et al. Synergistic Roles of Climate Warming and Human Occupation in Patagonian Megafaunal Extinctions during the Last Deglaciation. Sci. Adv. 2016;2:e1501682. doi: 10.1126/sciadv.1501682. PubMed DOI PMC
Karanth K.U., Sunquist M.E. Prey Selection by Tiger, Leopard and Dhole in Tropical Forests. J. Anim. Ecol. 1995;64:439–450. doi: 10.2307/5647. DOI
Kamler J.F., Johnson A., Vongkhamheng C., Bousa A. The Diet, Prey Selection, and Activity of Dholes (Cuon alpinus) in Northern Laos. J. Mammal. 2012;93:627–633. doi: 10.1644/11-MAMM-A-241.1. DOI