Resting-State Phase-Amplitude Coupling Between the Human Subthalamic Nucleus and Cortical Activity: A Simultaneous Intracranial and Scalp EEG Study

. 2021 May ; 34 (3) : 272-282. [epub] 20210129

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33515171
Odkazy

PubMed 33515171
DOI 10.1007/s10548-021-00822-8
PII: 10.1007/s10548-021-00822-8
Knihovny.cz E-zdroje

It has been suggested that slow oscillations in the subthalamic nucleus (STN) reflect top-down inputs from the medial prefrontal cortex, thus implementing behavior control. It is unclear, however, whether the STN oscillations are related to cortical activity in a bottom-up manner. To assess resting-state subcortico-cortical interactions, we recorded simultaneous scalp electroencephalographic activity and local field potentials in the STN (LFP-STN) in 11 patients with Parkinson's disease implanted with deep brain stimulation electrodes in the on-medication state during rest. We assessed the cross-structural phase-amplitude coupling (PAC) between the STN and cortical activity within a wide frequency range of 1 to 100 Hz. The PAC was dominant between the δ/θ STN phase and β/γ cortical amplitude in most investigated scalp regions and between the δ cortical phase and θ/α STN amplitude in the frontal and temporal regions. The cross-frequency linkage between the slow oscillations of the LFP-STN activity and the amplitude of the scalp-recorded cortical activity at rest was demonstrated, and similar involvement of the left and right STNs in the coupling was observed. Our results suggest that the STN plays a role in both bottom-up and top-down processes within the subcortico-cortical circuitries of the human brain during the resting state. A relative left-right symmetry in the STN-cortex functional linkage was suggested. Practical treatment studies would be necessary to assess whether unilateral stimulation of the STN might be sufficient for treatment of Parkinson's disease.

Zobrazit více v PubMed

Alonso-Frech F, Zamarbide I, Alegre M, Rodríguez-Oroz MC, Guridi J, Manrique M et al (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757. https://doi.org/10.1093/brain/awl103 PubMed DOI

Bočková M, Rektor I (2019) Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: a viewpoint. Clin Neurophysiol 130:239–247. https://doi.org/10.1016/j.clinph.2018.11.013 PubMed DOI

Bonnefond M, Kastner S, Jensen O (2017) Communication between brain areas based on nested oscillations. eNeuro. https://doi.org/10.1523/ENEURO.0153-16.2017 PubMed DOI PMC

Brown P, Williams D (2005) Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 116:2510–2519. https://doi.org/10.1016/j.clinph.2005.05.009 PubMed DOI

Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038. https://doi.org/10.1523/jneurosci.21-03-01033.2001 PubMed DOI PMC

Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 51:97–116 DOI

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628. https://doi.org/10.1126/science.1128115 PubMed DOI PMC

Castrioto A, Meaney C, Hamani C, Mazzella F, Poon YY, Lozano AM et al (2011) The Dominant-STN phenomenon in bilateral STN DBS for Parkinson’s disease. Neurobiol Dis 41:131–137. https://doi.org/10.1016/j.nbd.2010.08.029 PubMed DOI

Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, Frank MJ (2011) Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 14:1462–1467. https://doi.org/10.1038/nn.2925 PubMed DOI PMC

Chen CC, Hsu YT, Chan HL, Chiou SM, Tu PH, Lee ST et al (2010) Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp Neurol 224:234–240. https://doi.org/10.1016/j.expneurol.2010.03.015 PubMed DOI

Damborská A, Brázdil M, Rektor I, Janoušová E, Chládek J, Kukleta M (2012) Late divergence of target and nontarget ERPs in a visual oddball task. Physiol Res 61:307–318 DOI

Damborská A, Roman R, Brázdil M, Rektor I, Kukleta M (2016) Post-movement processing in visual oddball task—evidence from intracerebral recording. Clin Neurophysiol 127:1297–1306. https://doi.org/10.1016/j.clinph.2015.08.014 PubMed DOI

De Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG et al (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci USA 110:4780–4785 DOI

Engel AK, Fries P (2010) Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol 20:156–165. https://doi.org/10.1016/j.conb.2010.02.015 PubMed DOI

Fogelson N, Williams D, Tijssen M, Van Bruggen G, Speelman H, Brown P (2006) Different functional loops between cerebral cortex and the subthalmic area in Parkinson’s disease. Cereb Cortex 16:64–75. https://doi.org/10.1093/cercor/bhi084 PubMed DOI

Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480. https://doi.org/10.1016/j.tics.2005.08.011 PubMed DOI

Germano IM, Gracies JM, Weisz DJ, Tse W, Koller WC, Olanow CW (2004) Unilateral stimulation of the subthalamic nucleus in Parkinson disease: a double-blind 12-month evaluation study. J Neurosurg 101:36–42. https://doi.org/10.3171/jns.2004.101.1.0036 PubMed DOI

Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364. https://doi.org/10.1016/j.tins.2007.05.004 PubMed DOI

Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2010.00186 PubMed DOI PMC

Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758. https://doi.org/10.1016/S1388-2457(00)00386-2 PubMed DOI PMC

Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR et al (2018) A human prefrontal-subthalamic circuit for cognitive control. Brain 141:205–216 DOI

Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through walvelet transforms. Int J Pattern Recognit Artif Intell 1:273–302 DOI

Kukleta M, Bob P, Brázdil M, Roman R, Rektor I (2009) Beta 2-band synchronization during a visual oddball task. Physiol Res 58:725–732 DOI

Kukleta M, Bob P, Brázdil M, Roman R, Rektor I (2010) The level of frontal-temporal beta-2 band EEG synchronization distinguishes anterior cingulate cortex from other frontal regions. Conscious Cogn 19:879–886. https://doi.org/10.1016/j.concog.2010.04.007 PubMed DOI

Kukleta M, Damborská A, Turak B, Louvel J (2017) Evoked potentials in final epoch of self-initiated hand movement: a study in patients with depth electrodes. Int J Psychophysiol 117:119–125. https://doi.org/10.1016/j.ijpsycho.2017.05.004 PubMed DOI

Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113. https://doi.org/10.1126/science.1154735 PubMed DOI

Lalo E, Thobois S, Sharott A, Polo G, Mertens P, Pogosyan A, Brown P (2008) Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci 28:3008–3016. https://doi.org/10.1523/JNEUROSCI.5295-07.2008 PubMed DOI PMC

Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77:1002–1016 DOI

Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P et al (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134:359–374. https://doi.org/10.1093/brain/awq332 PubMed DOI

Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P (2001) Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 124:378–388. https://doi.org/10.1093/brain/124.2.378 PubMed DOI

Moran A, Bergman H, Israel Z, Bar-Gad I (2008) Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 131:3395–3409. https://doi.org/10.1093/brain/awn270 PubMed DOI

Onslow ACE, Bogacz R, Jones MW (2011) Quantifying phase–amplitude coupling in neuronal network oscillations. Prog Biophys Mol Biol 105:49–57 DOI

Oswal A, Brown P, Litvak V (2013a) Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 26:662–670. https://doi.org/10.1097/WCO.0000000000000034 PubMed DOI

Oswal A, Brown P, Litvak V (2013b) Movement related dynamics of subthalmo-cortical alpha connectivity in Parkinson’s disease. Neuroimage 70:132–142. https://doi.org/10.1016/j.neuroimage.2012.12.041 PubMed DOI PMC

Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187. https://doi.org/10.1016/0013-4694(89)90180-6 PubMed DOI PMC

Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756 DOI

Sharott A, Gulberti A, Zittel S, Tudor-Jones AA, Fickel U, Münchau A et al (2014) Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J Neurosci 34:6273–6285. https://doi.org/10.1523/JNEUROSCI.1803-13.2014 PubMed DOI PMC

Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ et al (2017) Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease. Clin Neurophysiol 128:128–137. https://doi.org/10.1016/j.clinph.2016.10.095 PubMed DOI

Slowinski JL, Putzke JD, Uitti RJ, Lucas JA, Turk MF, Kall BA, Wharen RE (2007) Unilateral deep brain stimulation of the subthalamic nucleus for Parkinson disease. J Neurosurg 106:626–632. https://doi.org/10.3171/jns.2007.106.4.626 PubMed DOI

Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387. https://doi.org/10.1016/S0306-4522(98)00004-9 PubMed DOI

Stein E, Bar-Gad I (2013) Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245:52–59. https://doi.org/10.1016/j.expneurol.2012.07.023 PubMed DOI

Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Berendse HW, Stam CJ (2007) Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 130:1847–1860 DOI

Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Stam CJ, Berendse HW (2008) Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage 41:212–222. https://doi.org/10.1016/j.neuroimage.2008.02.027 PubMed DOI

Voytek B, Canolty RT, Shestyuk A, Crone NE, Parvizi J, Knight RT (2010) Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2010.00191 PubMed DOI PMC

Williams D (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569. https://doi.org/10.1093/brain/awf156 PubMed DOI

Zavala B, Brittain JS, Jenkinson N, Ashkan K, Foltynie T, Limousin P et al (2013) Subthalamic nucleus local field potential activity during the eriksen flanker task reveals a novel role for theta phase during conflict monitoring. J Neurosci 33:14758–14766. https://doi.org/10.1523/JNEUROSCI.1036-13.2013 PubMed DOI PMC

Zavala BA, Tan H, Little S, Ashkan K, Hariz M, Foltynie T et al (2014) Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict. J Neurosci 34:7322–7333. https://doi.org/10.1523/JNEUROSCI.1169-14.2014 PubMed DOI PMC

Zavala B, Damera S, Dong JW, Lungu C, Brown P, Zaghloul KA (2015) Human subthalamic nucleus theta and beta oscillations entrain neuronal firing during sensorimotor conflict. Cereb Cortex 27:496–508. https://doi.org/10.1093/cercor/bhv244 DOI PMC

Zavala B, Tan H, Ashkan K, Foltynie T, Limousin P, Zrinzo L et al (2016) Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. Neuroimage 137:178–187. https://doi.org/10.1016/j.neuroimage.2016.05.031 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...