State-of-the-Art Water Treatment in Czech Power Sector: Industry-Proven Case Studies Showing Economic and Technical Benefits of Membrane and Other Novel Technologies for Each Particular Water Cycle
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TP01010031
Technology Agency of the Czech Republic
PubMed
33573305
PubMed Central
PMC7912338
DOI
10.3390/membranes11020098
PII: membranes11020098
Knihovny.cz E-resources
- Keywords
- CapEx, OpEx, SDI, boilers, capacitive deionization, colloidal particles, electrodeionization, electrodialysis, energy, forward osmosis, heating station, ion exchange, membrane distillation, membrane processes, payback period, power generation, reverse osmosis, shock electrodialysis, turbine condensate, ultrafiltration, water treatment,
- Publication type
- Journal Article MeSH
The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles-the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups-(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of technologies operated in energetics in Eastern Europe is briefly described. Although the work is conceived as an overview of water treatment in real operation, its novelty lies in a technological model of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power plants. This is followed by an evaluation of the potential novel technologies and novel materials.
See more in PubMed
Panáček F., Eliášek J. Chemistry of Energetic Circuits. Institute of Chemical Technology; Prague, Czech Republic: 1992.
The European Environment Agency Water Abstractions per Sector Based on Available ESTAT Data. [(accessed on 23 December 2020)]; Available online: http://www.eea.europa.eu/
Ansorge L., Zeman M. Model of Water Needs for Energy Production. [(accessed on 30 September 2020)];Statistika. 2016 96:35–46. Available online: https://www.czso.cz/documents/10180/32912822/32019716q3035.pdf.
Beardsley S.S., Coker S.D., Whipple S.S. The Economics of Reverse Osmosis and Ion Exchange. Dow Chemical Company; Midland, MI, USA: 1994.
De Dardel F. Water Demineralisation. Ion Exchange and Reverse Osmosis: Competitors or Associates? IX News. Special Issue. Rohm&Haas Company; Esslingen, Germany: 2005.
Marek J. Final Report of Project Research and Simulation of Hybrid Membrane Separative Technologies and Their Application in Energetic Industry. Ministery of Trade and Industry of Czechia. [(accessed on 16 October 2020)];2012 Available online: https://starfos.tacr.cz/en/project/FR-TI1%2F479.
Marek J. Ve Světě Běžně Používané Membránové Procesy Úpravy vod v České Energetice Místo Zatím Nenašly. Volume 1. All for Power; Karlín, Czech Republic: 2012. pp. 122–124.
Marek J. Ekonomické a Technické Přínosy Membránových Technologií v Energetice. Volume 5. All for Power; Karlín, Czech Republic: 2012. pp. 122–124.
Jelínek L. Desalination and Separative Methods in Water Treatment. UCT; Prague, Czech Republic: 2009.
Hübner P. Úprava vody v Energetice. 2nd ed. UCT; Prague, Czech Republic: 2015.
Vošta J., Matějka Z., Macák J. Power Engineering. Institute of Chemical Technology; Prague, Czechia: 1999.
VGB-Standard . Feed Water, Boiler Water and Steam Quality for Power Plants/Industrial Plants. VGB PowerTech Service GmbH; Essen, Germany: 2011.
Lenntech Company Websites Lenntech BV, Delfgauw, The Netherlands. [(accessed on 30 September 2020)]; Available online: https://www.lenntech.com/applications/demimeralized-process-water.htm.
Electric Power Research Institute Guideline for Preservation, Layup, and Startup of Water Treatment Equipment, March 2017 (ID 3002007941), Palo Alto, CA, USA. [(accessed on 24 September 2020)]; Available online: https://www.epri.com/research/products/000000003002007941.
Electric Power Research Institute Guidelines for Makeup Water Treatment, December 2010 (ID 10196351), Palo Alto, CA, USA. [(accessed on 24 September 2020)]; Available online: https://www.epri.com/research/products/0000000000010196351.
Fritzmann C., Löwenberg J., Wintgens T., Melin T. State-of-the-art of reverse osmosis desalination. Desalination. 2007;216:1–76. doi: 10.1016/j.desal.2006.12.009. DOI
Čuda P., Pospíšil P. Reverse osmosis in water treatment for boilers. Desalination. 2006;198:41–46. doi: 10.1016/j.desal.2006.09.007. DOI
Laind J.-M., Vial D., Moulart P. Status after 10 years of operation-overview of UF technology today. Desalination. 2000;131:17–25.
Kysela V. Applications of Electrodialysis for Waste Water Treatment by Mega Group, Journ. Sovak, Prague, Czech Republic. [(accessed on 24 December 2020)];2019 Available online: https://www.sovak.cz/sites/default/files/po633egaBhCxkL65d/05%20-%20Kysela.pdf.
Tsarenko A. Overview of Heating Sector in Ukraine. Center for Social and Economic Research, CASE. [(accessed on 27 November 2020)];2007 Available online: https://case-ukraine.com.ua/content/uploads/2018/09/2.pdf.
Enexio Group Hungary, List of References, Water Treatment Plants. [(accessed on 1 December 2020)];2016 :31. Available online: http://www.enexio.com/fileadmin/user_upload/media/dry_cooling_systems/ENEXIO_Hungary_Zrt_Referencelist_April_16.pdf.
Dolina J., Dlask O., Lederer T., Dvořák L. Mitigation of membrane biofouling through surface modification with different forms of nanosilver. Chem. Eng. J. 2015;275:125–133. doi: 10.1016/j.cej.2015.04.008. DOI
Polievkova E., Hubalek J., Krivcik J., Drbohlavova J. Ion Exchange Membranes with Antimicrobial Effect. In EEA Grants. [(accessed on 24 September 2020)]; Available online: https://www.ceitec.cz/e/f32955.
Taylor S.L., Fina L.R., Lambert J.L. New Water Disinfectant: An Insoluble Quaternary Ammonium Resin-Triiodide Combination that Releases Bactericide on Demand. Appl. Environ. Microbiol. 1970;20:720–722. doi: 10.1128/AM.20.5.720-722.1970. PubMed DOI PMC
Bataillon S.B., Tattevin P., Bonnaure-Mallet M., Jolivet-Gougeon A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents. 2012;39:381–389. doi: 10.1016/j.ijantimicag.2012.01.011. PubMed DOI
Marek J. Antimicrobial Properties of Ion Exchange Materials, Textile Bioengineering and Informatics Symposium Proceedings. TBIS; Wuhan, China: 2017. pp. 66–69.
Sosa Fernandez P.A., Miedema S.J., Bruning H., Leermakers F.A.M., Rijnaarts H.M., Post J.W. Influence of solution composition on fouling of anion exchange membranes desalinating polymer–flooding produced water. J. Colloid Interface Sci. 2019;557:381–394. doi: 10.1016/j.jcis.2019.09.029. PubMed DOI
Porada S., Zhao R., Van Der Wal A., Presser V., Biesheuvel P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013;58:1388–1442. doi: 10.1016/j.pmatsci.2013.03.005. DOI
Chen G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004;38:11–41. doi: 10.1016/j.seppur.2003.10.006. DOI
Singh R., Henkins N. Emerging Membrane Technology for Sustainable Water Treatment. Elsevier; Amsterdam, The Netherlands: 2016. p. 335.
Ibrahim G.P.S., Isloor A.M., Yuliwati E. Membrane Desalination Systems: The Next Generation. Renowned International Publishers; Karnataka, India: 2019. Review: Desalination by Forward Osmosis. Current Trends and Future Developments on (Bio-) Membranes; pp. 199–214. DOI
Jin X., Tang C.Y., Gu Y., She Q., Qi S. Boric acid permeation in forward osmosis membrane processes: Modeling, experiments, and implications. Environ. Sci Technol. 2011;45:2323–2330. doi: 10.1021/es103771a. PubMed DOI
Siyal M.I., Lee C.-K. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. J. Environ. Manag. 2019;243:45–66. doi: 10.1016/j.jenvman.2019.04.105. PubMed DOI
Deshmukh A., Boo C., Karanikola V., Lin S., Straub A.P., Tong T., Warsinger D.M. and Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018;11:1177–1196. doi: 10.1039/C8EE00291F. DOI
Ezugbe E.O., Rathilal S. Membrane Technologies in Wastewater Treatment: A Review. Membranes. 2020;10:89. doi: 10.3390/membranes10050089. PubMed DOI PMC
Nikonenko V.V., Kovalenko A.V., Urtenov M.K., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimit-ing currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI
Bazant M.Z., Dydek E.V., Deng D., Mani A. Method and Apparatus for Desalination and Purification. 8801910B2. U.S. Patent. 2014 Aug 12;
Bazant M.Z., Dydek E.V., Deng D., Mani A. Desalination and Purification System. 8999132B2. U.S. Patent. 2015 Apr 7;
Marek J., Čížek J., Tvrzník D. Optimizing porous material in shock electrodialysis unit. Desalin. Water Treat. 2019:38–45. doi: 10.5004/dwt.2019.24504. DOI
Tvrzník D., Marek J. Final Report of Project Electromembrane Modules of New Generation. Ministery of Trade and Industry of Czechia; Prague, Czech Republic: 2019. [(accessed on 19 November 2020)]. p. FV10062. Available online: https://starfos.tacr.cz/en/project/FV10062.
Čížek J., Cvejn P., Marek J., Tvrzník D. Desalination Performance Assessment of Scalable, Multi-Stack Ready Shock Electrodialysis Unit Utilizing Anion-Exchange Membranes. Membranes. 2020;11:347. doi: 10.3390/membranes10110347. PubMed DOI PMC
Alkhadra M.A., Gao T., Conforti K.N., Tian H., Bazant M.Z. Small-scale desalination of seawater by shock electrodialysis. Desalination. 2020;476:114219. doi: 10.1016/j.desal.2019.114219. DOI
Schlumpberger S. Ph.D. Thesis. Massachusetts Institute of Technology; Cambridge, MA, USA: 2016. Shock Electrodialysis for Water Purification and Electrostatic Correlations in Simple and Polyelectrolytes.
Hoffman A.R. The Connection: Water and Energy Security [online], The Institute for the Analysis of Global Security, [cit. 2008-05-20] [(accessed on 6 November 2020)]; Available online: www:http://www.iags.org/n0813043.
Pankratz T. Global Water Intelligence Opening Speech at 4th Annual Conference on Desalination Using Membrane Technology. Elsevier; Perth, Australia: 2019.
Humplik T., Lee J., O’Hern S.C., Fellman B.A., Baig M.A., Hassan S.F., Atieh M.A., Rahman F., Laoui T., Karnik R., et al. Nanostructured materials for water desalination. Nanotechnology. 2011;22 doi: 10.1088/0957-4484/22/29/292001. PubMed DOI
Esmaeillion F. Hybrid renewable energy systems for desalination. Appl. Water Sci. 2020;10:84. doi: 10.1007/s13201-020-1168-5. DOI
Tian X., Wang J., Zhang H., Cao Z., Zhao M., Guan Y., Zhang Y. Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer. RSC Adv. 2018;8:12439–12448. doi: 10.1039/C7RA13562A. PubMed DOI PMC
Górecki R., Reurink D.M., Khan M.M., Sanahuja-Embuena V., Trzaskuś K., Hélix-Nielsen C. Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. J. Membr. Sci. 2020;593:117392. doi: 10.1016/j.memsci.2019.117392. DOI
Sosa-Fernandez P.A., Post J.W., Ramdlan M.S., Leermakers FA M., Bruning H., Rijnaarts H.H.M. Improving the performance of polymer-flooding produced water electrodialysis through the application of pulsed electric field. Desalination. 2020;484:114424. doi: 10.1016/j.desal.2020.114424. DOI
Kodym R., Vlasák F., Šnita D., Černín A., Bouzek K. Spatially two-dimensional mathematical model of the flow hydrodynamics in a channel filled with a net-like spacer. J. Membr. Sci. 2011;368:171–183. doi: 10.1016/j.memsci.2010.11.042. DOI
Marek J., Čížek J., Kosina J. Ion Exchange Membrane. No. 307917. Czech Patent. 2019 Aug 21;
Marek J. Ph.D. Thesis. University of Chemical Technology Prague; Prague, Czech Republic: 2012. Preparation and Applications of Functionalised Polymer Fibers.
An H., Shin C., Chase G. Ion exchanger using electrospun polystyrene nanofibers. J. Membr. Sci. 2006;283:84–87. doi: 10.1016/j.memsci.2006.06.014. DOI
Arara Ö., Yüksela Ü., Kabay N., Yükselb M. Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination. 2014;342:16–22. doi: 10.1016/j.desal.2014.01.028. DOI
Grabowski A., Zhang G., Strathmann H., Eigenberger G. The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity. J. Membr. Sci. 2006;281:297–306. doi: 10.1016/j.memsci.2006.03.044. DOI
Dey A., Tate J. Ultrapure Water. Volume 8–9. GWI; London, UK: 2005. [(accessed on 24 December 2020)]. A review of spiral-wound EDI technology. Available online: https://www.ultrapurewater.com/articles/misc/part-1-a-review-of-spiral-wound-electrodeinozation-technology.
Kraton Company, USA Kraton Polymers develops breakthrough technology based on sulfonated copolymers. Membr. Technol. 2009;1 doi: 10.1016/S0958-2118(09)70001-1. DOI