• This record comes from PubMed

Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants

. 2021 ; 16 (2) : e0247015. [epub] 20210212

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Determining the function of proteins remains a key task of modern biology. Classical genetic approaches to knocking out protein function in plants still face limitations, such as the time-consuming nature of generating homozygous transgenic lines or the risk of non-viable loss-of-function phenotypes. We aimed to overcome these limitations by acting downstream of the protein level. Chimeric E3 ligases degrade proteins of interest in mammalian cell lines, Drosophila melanogaster embryos, and transgenic tobacco. We successfully recruited the 26S proteasome pathway to directly degrade a protein of interest located in plant nuclei. This success was achieved via replacement of the interaction domain of the E3 ligase adaptor protein SPOP (Speckle-type POZ adapter protein) with a specific anti-GFP nanobody (VHHGFP4). For proof of concept, the target protein CENH3 of A. thaliana fused to EYFP was subjected to nanobody-guided proteasomal degradation in planta. Our results show the potential of the modified E3-ligase adapter protein VHHGFP4-SPOP in this respect. We were able to point out its capability for nucleus-specific protein degradation in plants.

See more in PubMed

Zhang Y, Ma X, Xie X, Liu YG. CRISPR/Cas9-Based Genome Editing in Plants. Progress in molecular biology and translational science. 2017;149:133–50. Epub 2017/07/18. 10.1016/bs.pmbts.2017.03.008 . PubMed DOI

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science (New York, NY). 2014;346(6213):1258096 Epub 2014/11/29. 10.1126/science.1258096 . PubMed DOI

Wang X, Ye L, Lyu M, Ursache R, Löytynoja A, Mähönen AP. An inducible genome editing system for plants. Nature Plants. 2020;6(7):766–72. 10.1038/s41477-020-0695-2 PubMed DOI PMC

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology. 2013;31(9):827–32. 10.1038/nbt.2647 PubMed DOI PMC

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. Epub 1998/03/05. 10.1038/35888 . PubMed DOI

Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature reviews Genetics. 2012;13(4):227–32. Epub 2012/03/14. 10.1038/nrg3185 PubMed DOI PMC

Hershko A, Ciechanover A. The ubiquitin system. Annual review of biochemistry. 1998;67:425–79. Epub 1998/10/06. 10.1146/annurev.biochem.67.1.425 . PubMed DOI

Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature structural & molecular biology. 2011;19(1):117–21. Epub 2011/12/14. 10.1038/nsmb.2180 . PubMed DOI

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998;391(6666):493–6. Epub 1998/02/14. 10.1038/35154 . PubMed DOI

Theodosiou NA, Zhang S, Wang WY, Xu T. slimb coordinates wg and dpp expression in the dorsal-ventral and anterior-posterior axes during limb development. Development (Cambridge, England). 1998;125(17):3411–6. Epub 1998/08/07. . PubMed

Kirchhofer A, Helma J, Schmidthals K, Frauer C, Cui S, Karcher A, et al. Modulation of protein properties in living cells using nanobodies. Nature structural & molecular biology. 2010;17(1):133–8. Epub 2009/12/17. 10.1038/nsmb.1727 . PubMed DOI

Heriche JK, Ang D, Bier E, O’Farrell PH. Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC genetics. 2003;4:9 Epub 2003/06/06. 10.1186/1471-2156-4-9 PubMed DOI PMC

Ju Shin Y, Kyun Park S, Jung Jung Y, Na Kim Y, Sung Kim K, Kyu Park O, et al. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. Scientific Reports. 2015;5:14269 10.1038/srep14269 http://www.nature.com/articles/srep14269#supplementary-information. PubMed DOI PMC

Takahashi I, Kameoka Y, Hashimoto K. MacroH2A1.2 binds the nuclear protein Spop. Biochimica et biophysica acta. 2002;1591(1–3):63–8. Epub 2002/08/17. 10.1016/s0167-4889(02)00249-5 . PubMed DOI

Baudisch B, Pfort I, Sorge E, Conrad U. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants. Frontiers in plant science. 2018;9:130 Epub 2018/02/27. 10.3389/fpls.2018.00130 PubMed DOI PMC

Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. The Plant cell. 2006;18(10):2443–51. Epub 2006/10/10. 10.1105/tpc.106.043174 PubMed DOI PMC

Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, et al. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. The Plant journal: for cell and molecular biology. 2011;68(1):40–50. Epub 2011/06/04. 10.1111/j.1365-313X.2011.04664.x . PubMed DOI

Ravi M, Chan SW. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464(7288):615–8. Epub 2010/03/26. 10.1038/nature08842 . PubMed DOI

Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH. A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 1987;15(14):5890–. 10.1093/nar/15.14.5890 . PubMed DOI PMC

Floss DM, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, et al. Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol. 2010;2010:274346–. Epub 04/13. 10.1155/2010/274346 . PubMed DOI PMC

Franck A, Guilley H, Jonard G, Richards K, Hirth L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell. 1980;21(1):285–94. Epub 1980/08/01. 10.1016/0092-8674(80)90136-1 . PubMed DOI

Odell JT, Nagy F, Chua NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature. 1985;313(6005):810–2. Epub 1985/02/06. 10.1038/313810a0 . PubMed DOI

Murashige T, Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum. 1962;15(3):473–97. 10.1111/j.1399-3054.1962.tb08052.x DOI

Kapila J, De Rycke R, Van Montagu M, Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science. 1997;122(1):101–8. 10.1016/S0168-9452(96)04541-4. DOI

Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, et al. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(20):11128–33. 10.1073/pnas.96.20.11128 . PubMed DOI PMC

Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368–79. 10.1016/0003-2697(87)90587-2 . PubMed DOI

Gahrtz M, Conrad U. Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. Methods in molecular biology (Clifton, NJ). 2009;483:289–312. Epub 2009/02/03. 10.1007/978-1-59745-407-0_17 . PubMed DOI

Xu F, Copeland C. Nuclear Extraction from Arabidopsis thaliana. Bio-protocol. 2012;2(24):e306 10.21769/BioProtoc.306 DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. Epub 2002/02/16. 10.1006/meth.2001.1262 . PubMed DOI

Ishii T, Juranić M, Maheshwari S, de Oliveira Bustamante F, Vogt MM, Salinas-Gamboa R, et al. Unequal contribution of two paralogous centromeric histones to function the cowpea centromere. bioRxiv. 2020:2020.01.07.897074 10.1101/2020.01.07.897074 DOI

Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Molecular & cellular proteomics: MCP. 2008;7(2):282–9. Epub 2007/10/24. 10.1074/mcp.M700342-MCP200 . PubMed DOI

Kubala MH, Kovtun O, Alexandrov K, Collins BM. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein science: a publication of the Protein Society. 2010;19(12):2389–401. Epub 2010/10/15. 10.1002/pro.519 PubMed DOI PMC

Weber H, Hellmann H. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. The FEBS journal. 2009;276(22):6624–35. Epub 2009/10/22. 10.1111/j.1742-4658.2009.07373.x . PubMed DOI

Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. The EMBO journal. 2004;23(8):1681–7. Epub 2004/04/09. 10.1038/sj.emboj.7600186 PubMed DOI PMC

Hauptmann V, Menzel M, Weichert N, Reimers K, Spohn U, Conrad U. In planta production of ELPylated spidroin-based proteins results in non-cytotoxic biopolymers. BMC Biotechnology. 2015;15(1):9 10.1186/s12896-015-0123-2 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...