TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation

. 2021 Feb 13 ; 13 (4) : . [epub] 20210213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668566

Grantová podpora
113S389 TUBITAK
- Turkish Academy of Sciences
- Izmir Biomedicine and Genome Center
MMCI, 00209805 MH CZ - DRO
19-06530S Grant Agency of the Czech Republic
No.CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund-Project ENOCH
- EMBO Installation Grant
- TUBITAK

Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.

Zobrazit více v PubMed

Sia D., Villanueva A., Friedman S.L., Llovet J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology. 2017;152:745–761. doi: 10.1053/j.gastro.2016.11.048. PubMed DOI

Désert R., Nieto N., Musso O. Dimensions of hepatocellular carcinoma phenotypic diversity. World J. Gastroenterol. 2018;24:4536–4547. doi: 10.3748/wjg.v24.i40.4536. PubMed DOI PMC

Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–574. doi: 10.1016/j.stem.2014.04.010. PubMed DOI

Benhamouche S., Curto M., Saotome I., Gladden A.B., Liu C.H., Giovannini M., McClatchey A.I. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–1730. doi: 10.1101/gad.1938710. PubMed DOI PMC

Tschaharganeh D.F., Xue W., Calvisi D.F., Evert M., Michurina T.V., Dow L.E., Banito A., Katz S.F., Kastenhuber E.R., Weissmueller S., et al. P53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell. 2014;158:579–592. doi: 10.1016/j.cell.2014.05.051. PubMed DOI PMC

Shin S., Wangensteen K.J., Teta-Bissett M., Wang Y.J., Mosleh-Shirazi E., Buza E.L., Greenbaum L.E., Kaestner K.H. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology. 2016;64:1163–1177. doi: 10.1002/hep.28602. PubMed DOI PMC

Cast A., Valanejad L., Wright M., Nguyen P., Gupta A., Zhu L., Shin S., Timchenko N. C/EBPα-dependent preneoplastic tumor foci are the origin of hepatocellular carcinoma and aggressive pediatric liver cancer. Hepatology. 2018;67:1857–1871. doi: 10.1002/hep.29677. PubMed DOI PMC

Ishimoto O., Kawahara C., Enjo K., Obinata M., Nukiwa T., Ikawa S. Possible oncogenic potential of ΔNp73: A newly identified isoform of human p73. Cancer Res. 2002;62:636–641. PubMed

Grob T.J., Novak U., Maisse C., Barcaroli D., Lüthi A., Pirnia F., Hügli B., Graber H.U., De Laurenzi V., Fey M., et al. Human DNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001;8:1213–1223. doi: 10.1038/sj.cdd.4400962. PubMed DOI

Zaika A.I., Slade N., Erster S.H., Sansome C., Joseph T.W., Pearl M., Chalas E., Moll U.M. δNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J. Exp. Med. 2002;196:765–780. doi: 10.1084/jem.20020179. PubMed DOI PMC

Müller M., Schilling T., Sayan A.E., Kairat A., Lorenz K., Schulze-Bergkamen H., Oren M., Koch A., Tannapfel A., Stremmel W., et al. TAp73/ΔNp73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ. 2005;12:1564–1577. doi: 10.1038/sj.cdd.4401774. PubMed DOI

Stiewe T., Theseling C.C., Pützer B.M. Transactivation-deficient ΔTA-p73 inhibits p53 by direct competition for DNA binding. Implications for tumorigenesis. J. Biol. Chem. 2002;277:14177–14185. doi: 10.1074/jbc.M200480200. PubMed DOI

Stiewe T., Pu B.M. Role of p73 in malignancy: Tumor suppressor or oncogene? Cell Death Differ. 2002;9:237–245. doi: 10.1038/sj.cdd.4400995. PubMed DOI

Buhlmann S., Pützer B.M. DNp73 a matter of cancer: Mechanisms and clinical implications. Biochim. Biophys. Acta Rev. Cancer. 2008;1785:207–216. doi: 10.1016/j.bbcan.2008.01.002. PubMed DOI

Sayan A.E., Sayan B.S., Findikli N., Ozturk M. Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells. Oncogene. 2001;23:5111–5117. doi: 10.1038/sj.onc.1204669. PubMed DOI

Murray-Zmijewski F., Lane D.P., Bourdon J.C. p53/p63/p73 isoforms: An orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–972. doi: 10.1038/sj.cdd.4401914. PubMed DOI

Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont X., et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–819. doi: 10.1016/S0092-8674(00)80540-1. PubMed DOI

Marin M.C., Kaelin W.G. p63 and p73: Old members of a new family. Biochim. Biophys. Acta Rev. Cancer. 2000;1470:2019. doi: 10.1016/S0304-419X(00)00010-X. PubMed DOI

Melino G., De Laurenzi V., Vousden K.H. p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer. 2002;2:605–615. doi: 10.1038/nrc861. PubMed DOI

Puig P., Capodieci P., Drobnjak M., Verbel D., Prives C., Cordon-Cardo C., Di Como C.J. p73 Expression in Human Normal and Tumor Tissues: Loss of p73α Expression Is Associated with Tumor Progression in Bladder Cancer. Clin. Cancer Res. 2003;9:5642–5651. PubMed

Meier C., Hardtstock P., Joost S., Alla V., Pützer B.M. P73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res. 2016;76:197–205. doi: 10.1158/0008-5472.CAN-15-1228. PubMed DOI

Engelmann D., Meier C., Alla V., Pützer B.M. A balancing act: Orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene. 2015;34:4287–4299. doi: 10.1038/onc.2014.365. PubMed DOI

Bunjobpol W., Dulloo I., Igarashi K., Concin N., Matsuo K., Sabapathy K. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: Mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs. Cell Death Differ. 2014;21:1240–1249. doi: 10.1038/cdd.2014.41. PubMed DOI PMC

Schuster A., Schilling T., De Laurenzi V., Koch A.F., Seitz S., Staib F., Teufel A., Thorgeirsson S.S., Galle P.R., Melino G., et al. ΔNp73β is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle. 2010;9:2629–2639. doi: 10.4161/cc.9.13.12110. PubMed DOI

Steder M., Alla V., Meier C., Spitschak A., Pahnke J., Fürst K., Kowtharapu B.S., Engelmann D., Petigk J., Egberts F., et al. DNp73 Exerts Function in Metastasis Initiation by Disconnecting the Inhibitory Role of EPLIN on IGF1R-AKT/STAT3 Signaling. Cancer Cell. 2013;24:512–527. doi: 10.1016/j.ccr.2013.08.023. PubMed DOI

Sun W., Duan T., Ye P., Chen K., Zhang G., Lai M., Zhang H. TSVdb: A web-tool for TCGA splicing variants analysis. BMC Genom. 2018;19 doi: 10.1186/s12864-018-4775-x. PubMed DOI PMC

Sayan A.E., Paradisi A., Vojtesek B., Knight R.A., Melino G., Candi E. New antibodies recognizing p73: Comparison with commercial antibodies. Biochem. Biophys. Res. Commun. 2005;330:186–193. doi: 10.1016/j.bbrc.2005.02.145. PubMed DOI

Bressac B., Kew M., Wands J., Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350:429–431. doi: 10.1038/350429a0. PubMed DOI

Fontemaggi G., Kela I., Amariglio N., Rechavi G., Krishnamurthy J., Strano S., Sacchi A., Givol D., Blandino G. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J. Biol. Chem. 2002;277:43359–43368. doi: 10.1074/jbc.M205573200. PubMed DOI

Zhang J., Sun W., Kong X., Zhang Y., Yang H.J., Ren C., Jiang Y., Chen M., Chen X. Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proc. Natl. Acad. Sci. USA. 2019;116:24259–24267. doi: 10.1073/pnas.1913919116. PubMed DOI PMC

Veselska R., Neradil J., Nekulova M., Dobrucka L., Vojtesek B., Sterba J., Zitterbart K. Intracellular distribution of the ΔNp73 protein isoform in medulloblastoma cells: A study with newly generated rabbit polyclonal antibodies. Histol. Histopathol. 2013;28:913–924. doi: 10.14670/HH-28.913. PubMed DOI

Nekulova M., Holcakova J., Nenutil R., Stratmann R., Bouchalova P., Müller P., Mouková L., Coates P.J., Vojtesek B. Characterization of specific p63 and p63-N-terminal isoform antibodies and their application for immunohistochemistry. Virchows Arch. 2013;463:415–425. doi: 10.1007/s00428-013-1459-4. PubMed DOI

Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J.P., Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1:417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Strano S., Munarriz E., Rossi M., Castagnoli L., Shaul Y., Sacchi A., Oren M., Sudol M., Cesareni G., Blandino G. Physical Interaction with Yes-associated Protein Enhances p73 Transcriptional Activity. J. Biol. Chem. 2001;276:15164–15173. doi: 10.1074/jbc.M010484200. PubMed DOI

Strano S., Monti O., Pediconi N., Baccarini A., Fontemaggi G., Lapi E., Mantovani F., Damalas A., Citro G., Sacchi A., et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol. Cell. 2005;18:447–459. doi: 10.1016/j.molcel.2005.04.008. PubMed DOI

Zhang H., Wu S., Xing D. YAP accelerates Aβ25-35-induced apoptosis through upregulation of Bax expression by interaction with p73. Apoptosis. 2011;16:808–821. doi: 10.1007/s10495-011-0608-y. PubMed DOI

Totaro A., Castellan M., Di Biagio D., Piccolo S. Crosstalk between YAP/TAZ and Notch Signaling. Trends Cell Biol. 2018;28:560–573. doi: 10.1016/j.tcb.2018.03.001. PubMed DOI PMC

Tanimizu N., Kaneko K., Itoh T., Ichinohe N., Ishii M., Mizuguchi T., Hirata K., Miyajima A., Mitaka T. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 2016;64:175–188. doi: 10.1002/hep.28521. PubMed DOI

Lu J., Zhou Y., Hu T., Zhang H., Shen M., Cheng P., Dai W., Wang F., Chen K., Zhang Y., et al. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy. Sci. Rep. 2016;6 doi: 10.1038/srep22754. PubMed DOI PMC

Jeliazkova P., Jörs S., Lee M., Zimber-Strobl U., Ferrer J., Schmid R.M., Siveke J.T., Geisler F. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology. 2013;57:2469–2479. doi: 10.1002/hep.26254. PubMed DOI

Chen X., Lingala S., Khoobyari S., Nolta J., Zern M.A., Wu J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J. Hepatol. 2011;55:838–845. doi: 10.1016/j.jhep.2010.12.043. PubMed DOI PMC

Yamashita T., Ji J., Budhu A., Forgues M., Yang W., Wang Y., Jia H., Ye Q., Qin L., Wauthier E., et al. EpCAM-Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With Stem/Progenitor Cell Features. Gastroenterology. 2009;136:1012–1024, doiorg/101053/jgastro200812004. doi: 10.1053/j.gastro.2008.12.004. PubMed DOI PMC

Avci M.E., Keskus A.G., Targen S., Isilak M.E., Ozturk M., Atalay R.C., Adams M.M., Konu O. Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-19817-w. PubMed DOI PMC

Petitjean A., Ruptier C., Tribollet V., Hautefeuille A., Chardon F., Cavard C., Puisieux A., Hainaut P., De Fromentel C.C. Properties of the six isoforms of p63: P53-like regulation in response to genotoxic stress and cross talk with δNp73. Carcinogenesis. 2008;29:273–281. doi: 10.1093/carcin/bgm258. PubMed DOI

Zhang X., Abdelrahman A., Vollmar B., Zechner D. The ambivalent function of YAP in apoptosis and cancer. Int. J. Mol. Sci. 2018;19:3770. doi: 10.3390/ijms19123770. PubMed DOI PMC

Simile M.M., Latte G., Demartis M.I., Brozzetti S., Calvisi D.F., Porcu A., Feo C.F., Seddaiu M.A., Daino L., Berasain C., et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194–49216. doi: 10.18632/oncotarget.10246. PubMed DOI PMC

Yu F.-X., Meng Z., Plouffe S.W., Guan K.-L. Hippo Pathway Regulation of Gastrointestinal Tissues. Annu. Rev. Physiol. 2015;77:201–227. doi: 10.1146/annurev-physiol-021014-071733. PubMed DOI

Tophkhane C., Yang S.H., Jiang Y., Ma Z., Subramaniam D., Anant S., Yogosawa S., Sakai T., Liu W.G., Edgerton S., et al. p53 Inactivation Upregulates p73 Expression through E2F-1 Mediated Transcription. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0043564. PubMed DOI PMC

Cui R., Nguyen T.T., Taube J.H., Stratton S.A., Feuerman M.H., Barton M.C. Family members p53 and p73 act together in chromatin modification and direct repression of α-fetoprotein transcription. J. Biol. Chem. 2005;280:39152–39160. doi: 10.1074/jbc.M504655200. PubMed DOI

Noce V., Battistelli C., Cozzolino A.M., Consalvi V., Cicchini C., Strippoli R., Tripodi M., Marchetti A., Amicone L. YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis. 2019;10 doi: 10.1038/s41419-019-2000-8. PubMed DOI PMC

Simon R., Lam A., Li M.-C., Ngan M., Menenzes S., Zhao Y. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2007;4:11–17. doi: 10.1177/117693510700300022. PubMed DOI PMC

Subramanian A., Kuehn H., Gould J., Tamayo P., Mesirov J.P. GSEA-P: A desktop application for gene set enrichment analysis. Bioinformatics. 2007;23:3251–3253. doi: 10.1093/bioinformatics/btm369. PubMed DOI

Gunes A., Bagirsakci E., Iscan E., Cakan-Akdogan G., Aykutlu U., Senturk S., Ozhan G., Erdal E., Nart D., Barbet F.Y., et al. Thioredoxin interacting protein promotes invasion in hepatocellular carcinoma. Oncotarget. :2018. doi: 10.18632/oncotarget.26402. PubMed DOI PMC

Karagonlar Z.F., Akbari S., Karabicici M., Sahin E., Avci S.T., Ersoy N., Ates K.E., Balli T., Karacicek B., Kaplan K.N., et al. A Novel Function for KLF4 in Modulating the De-differentiation of EpCAM-/CD133- nonStem Cells into EpCAM+/CD133+ Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells. 2020;9:1198. doi: 10.3390/cells9051198. PubMed DOI PMC

Nakano K., Balint E., Ashcroft M., Vousden K.H. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene. 2000;19:4283–4289. doi: 10.1038/sj.onc.1203774. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace