The Impact of Cultivation Media on the In Vitro Biofilm Biomass Production of Candida spp
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33765192
DOI
10.1007/s00284-021-02452-6
PII: 10.1007/s00284-021-02452-6
Knihovny.cz E-zdroje
- MeSH
- antifungální látky MeSH
- biofilmy MeSH
- biomasa MeSH
- Candida albicans * MeSH
- Candida * MeSH
- kultivační média MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky MeSH
- kultivační média MeSH
The yeasts of the genus Candida are among the most clinically significant fungal pathogenic agents. One of the unique features of the Candida species' pathogenicity is their ability to form biofilms. Generally, infections caused by biofilm-forming microorganisms tend to have chronic course and are difficult to treat. This fact highlights the need to search for drugs with anti-biofilm activities. At present, there are variety of protocols for performing antifungal anti-biofilm activity testing in which fundamental differences, especially in the choice of cultivation media for biofilm formation, can be noted. In our study, we focused on the effect of four different culture media on biofilm biomass formation in ten Candida spp. strains. With emphasis placed on clinical significance, strains of the C. albicans species were predominantly included in this study. Based on our results, we can conclude that the availability of other components in the culture media, such as amino acids or proteins, and not just the commonly mentioned glucose availability, helps promote the transition of Candida yeasts into a sessile form and leads to in vitro robust biofilm formation. We revealed that biofilm formation in C. albicans strains was enhanced, especially in media supplemented with fetal bovine serum (FBS). The nutritionally balanced cultivation medium with 10 g/L glucose and 10% (v/v) FBS evidently showed the most significant benefit for in vitro biofilm production in C. albicans strains.
Zobrazit více v PubMed
Chin VK, Lee TY, Rusliza B, Chong PP (2016) Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review. Int J Mol Sci 17(10):1643. https://doi.org/10.3390/ijms17101643 DOI PMC
Kelly BP (2012) Superficial fungal infections. Pediatr Rev 33(4):e22-37. https://doi.org/10.1542/pir.33-4-e22 PubMed DOI
Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128. https://doi.org/10.4161/viru.22913 PubMed DOI PMC
Tsui Ch, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74(4):ftw018. https://doi.org/10.1093/femspd/ftw018 PubMed DOI PMC
Leid JG (2009) Bacterial biofilms resist key host defenses. Microbe 4(2):66–70
Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20(14):3423. https://doi.org/10.3390/ijms20143423 DOI PMC
Bjarnshold T (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl 136:1–51. https://doi.org/10.1111/apm.12099 DOI
Costerson JW, Steward PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. https://doi.org/10.1126/science.284.5418.1318 DOI
Desai JV, Mitchell AP, Andes DR (2014) Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4(10):a019729. https://doi.org/10.1101/cshperspect.a019729 PubMed DOI PMC
Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100(1):1–18. https://doi.org/10.1002/bit.21838 PubMed DOI PMC
Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Annu Rev Med 59:415–428. https://doi.org/10.1146/annurev.med.59.110106.132000 PubMed DOI
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12. https://doi.org/10.1080/09168451.2015.1058701 PubMed DOI
Weerasekera MM, Wijesinghe GK, Jayarathna TA, Gunasekara CP, Fernando N, Kottegoda N, Samaranayake LP (2016) Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem Inst Oswaldo Cruz 111(11):697–702. https://doi.org/10.1590/0074-02760160294 PubMed DOI PMC
Bansal M, Samant SA, Singht S, Talukdar A (2016) Phenotypic detection of biofilms in Candida species isolated from various clinical samples. Int J Curr Microbiol App Sci 5(3):47–56. https://doi.org/10.20546/ijcmas.2016.503.007 DOI
Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006 DOI
Tulasidas S, Rao P, Bhat S, Manipura R (2018) A study on biofilm production and antifungal drug resistance among Candida species from vulvovaginal and bloodstream infections. Infect Drug Resist 11:2443–2448. https://doi.org/10.2147/IDR.S179462 PubMed DOI PMC
Costa AC, Pereira CA, Freie F, Jungqueira JC, Jorge AO (2013) Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses 56(6):614–222. https://doi.org/10.1111/myc.12092 PubMed DOI
Daniels KJ, Park YN, Srikantha T, Soll DR (2013) Impact of environmental conditions on the form and function of Candida albicans biofilms. Eukaryot Cell 12(10):1389–1402. https://doi.org/10.1128/EC.00127-13 PubMed DOI PMC
Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H (2006) Metal resistance in Candida biofilms. FEMS Microbiol Ecol 55(3):479–491. https://doi.org/10.1111/j.1574-6941.2005.00045.x PubMed DOI
Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:91. https://doi.org/10.1186/s12951-015-0147-8 DOI
Leonhard M, Zatorska B, Moser D, Schneider-Stickler B (2019) Growth media for mixed multispecies oropharyngeal biofilm compositions on silicone. Biomed Res Int. https://doi.org/10.1155/2019/8051270 PubMed DOI PMC
Pal J, Bisht D (2016) Detection of biofilm production in Candida species isolates recovered from bloodstream patients. Int J Biomed Adv Res 7(5):226–229. https://doi.org/10.7439/ijbar.v7i5.3077 DOI
Serrano-Fujarte I, Lopez-Romero E, Reyna-Lopez GE, Martinez-Gamez MA, Vega-Gonzales A, Cuellar-Cruz M (2015) Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress. Biomed Res Int 2015:783639. https://doi.org/10.1155/2015/783639 PubMed DOI PMC
Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H (2011) Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol 60(9):1261–1269. https://doi.org/10.1099/jmm.0.032037-0 PubMed DOI
Brown AJ, Brown GD, Netea MG, Gow NA (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22(11):614–622. https://doi.org/10.1016/j.tim.2014.07.001 PubMed DOI PMC
Ene IV, Brunk S, Brown AJ, Hube B (2014) Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med 4:a019695. https://doi.org/10.1101/cshperspect.a019695 PubMed DOI PMC
Van Ende M, Wijnants S, Van Dijck P (2019) Sugar sensing and signaling in Candidaalbicans and Candidaglabrata. Front Microbiol 10:99. https://doi.org/10.3389/fmicb.2019.00099 PubMed DOI PMC
Perez LR, Barth AL (2011) Biofilm production using distinct media and antimicrobial susceptibility profile of Pseudomonas aeruginosa. Braz J infect Dis 15(4):301–304. https://doi.org/10.1016/s1413-8670(11)70196-9 PubMed DOI
Singh AK, Prakash P, Achram A, Singh GP, Das A, Singh RK (2017) Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J Glob Infect Dis 9(3):93–101. https://doi.org/10.4103/jgid.jgid_91_16 PubMed DOI PMC
Kucharikova S, Velde GV, Himmelreich U, Van Dijck P (2015) Candida albicans biofilm development on medically-relevant foreign bodies a mouse subcutaneous model followed by bioluminescence imaging. J Vis Exp 95:e52239. https://doi.org/10.3791/52239 DOI
Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173. https://doi.org/10.1111/j.1574-6968.2004.tb09643.x PubMed DOI
Cherifi T, Jacques M, Quessy S, Fravalo P (2017) Impact of nutrient restriction on the structure of Listeria monocytogenes biofilm grown in a microfluidic system. Front Microbiol 8:864. https://doi.org/10.3389/fmicb.2017.00864 PubMed DOI PMC
Oh YJ, Jo W, Yang Y, Park S (2007) Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy 107(10–11):869–874. https://doi.org/10.1016/j.ultramic.2007.01.021 PubMed DOI
Rochex A, Lebeault JM (2007) Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Res 41(13):2885–2892. https://doi.org/10.1016/j.watres.2007.03.041 PubMed DOI
Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, Brown AJ (2012) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14(9):1319–1335. https://doi.org/10.1111/j.1462-5822.2012.01813.x PubMed DOI PMC
Zuza-Alves DL, Silva-Rocha WP, Chaves GM (2017) An update on Candida tropicalis based on basic and clinical approaches. Front Microbiol 8:1927. https://doi.org/10.3389/fmicb.2017.01927 PubMed DOI PMC
Galan-Ladero MA, Blanco-Blanco MT, Fernandez-Calderon MC, Lucio L, Gutierrez-Martin Y, Blanco MT, Perez-Giraldo C (2018) Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast 36(2):107–115. https://doi.org/10.1002/yea.3370 PubMed DOI