• This record comes from PubMed

Circulation of Babesia Species and Their Exposure to Humans through Ixodes Ricinus

. 2021 Mar 24 ; 10 (4) : . [epub] 20210324

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
522003007 ZonMw - Netherlands

Links

PubMed 33804875
PubMed Central PMC8063829
DOI 10.3390/pathogens10040386
PII: pathogens10040386
Knihovny.cz E-resources

Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.

See more in PubMed

Homer M.J., Aguilar-Delfin I., Telford S.R., 3rd, Krause P.J., Persing D.H. Babesiosis. Clin. Microbiol Rev. 2000;13:451–469. doi: 10.1128/CMR.13.3.451. PubMed DOI PMC

Schnittger L., Rodriguez A.E., Florin-Christensen M., Morrison D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012;12:1788–1809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI

Jalovecka M., Sojka D., Ascencio M., Schnittger L. Babesia Life Cycle—When Phylogeny Meets Biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI

Schreeg M.E., Marr H.S., Tarigo J.L., Cohn L.A., Bird D.M., Scholl E.H., Levy M.G., Wiegmann B.M., Birkenheuer A.J. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny. PLoS ONE. 2016;11:e0165702. doi: 10.1371/journal.pone.0165702. PubMed DOI PMC

Baneth G., Florin-Christensen M., Cardoso L., Schnittger L. Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit. Vectors. 2015;8:207. doi: 10.1186/s13071-015-0830-5. PubMed DOI PMC

Hornok S., Horvath G., Takacs N., Kontschan J., Szoke K., Farkas R. Molecular identification of badger-associated Babesia sp. DNA in dogs: Updated phylogeny of piroplasms infecting Caniformia. Parasit. Vectors. 2018;11:235. doi: 10.1186/s13071-018-2794-8. PubMed DOI PMC

Hrazdilova K., Rybarova M., Siroky P., Votypka J., Zintl A., Burgess H., Steinbauer V., Zakovcik V., Modry D. Diversity of Babesia spp. in cervid ungulates based on the 18S rDNA and cytochrome c oxidase subunit I phylogenies. Infect. Genet. Evol. 2020;77:104060. doi: 10.1016/j.meegid.2019.104060. PubMed DOI

Nathaly Wieser S., Schnittger L., Florin-Christensen M., Delbecq S., Schetters T. Vaccination against babesiosis using recombinant GPI-anchored proteins. Int. J. Parasitol. 2019;49:175–181. doi: 10.1016/j.ijpara.2018.12.002. PubMed DOI

Solano-Gallego L., Sainz A., Roura X., Estrada-Pena A., Miro G. A review of canine babesiosis: The European perspective. Parasit. Vectors. 2016;9:336. doi: 10.1186/s13071-016-1596-0. PubMed DOI PMC

Vannier E., Krause P.J. Human babesiosis. N. Engl. J. Med. 2012;366:2397–2407. doi: 10.1056/NEJMra1202018. PubMed DOI

Yang Y., Christie J., Koster L., Du A., Yao C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms. 2021;9:440. doi: 10.3390/microorganisms9020440. PubMed DOI PMC

Gray J.S. Identity of the causal agents of human babesiosis in Europe. Int. J. Med. Microbiol. 2006;296(Suppl. 40):131–136. doi: 10.1016/j.ijmm.2006.01.029. PubMed DOI

Gray J., Zintl A., Hildebrandt A., Hunfeld K.P., Weiss L. Zoonotic babesiosis: Overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis. 2010;1:3–10. doi: 10.1016/j.ttbdis.2009.11.003. PubMed DOI

Hamsikova Z., Kazimirova M., Harustiakova D., Mahrikova L., Slovak M., Berthova L., Kocianova E., Schnittger L. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit. Vectors. 2016;9:292. doi: 10.1186/s13071-016-1560-z. PubMed DOI PMC

Goethert H.K., Telford S.R., 3rd What is Babesia microti? Parasitology. 2003;127:301–309. doi: 10.1017/S0031182003003822. PubMed DOI

Wielinga P.R., Fonville M., Sprong H., Gaasenbeek C., Borgsteede F., van der Giessen J.W. Persistent detection of Babesia EU1 and Babesia microti in Ixodes ricinus in the Netherlands during a 5-year surveillance: 2003–2007. Vector Borne Zoonotic Dis. 2009;9:119–122. doi: 10.1089/vbz.2008.0047. PubMed DOI

Bos J.H., Klip F.C., Sprong H., Broens E.M., Kik M.J.L. Clinical outbreak of babesiosis caused by Babesia capreoli in captive reindeer (Rangifer tarandus tarandus) in the Netherlands. Ticks Tick Borne Dis. 2017;8:799–801. doi: 10.1016/j.ttbdis.2017.06.006. PubMed DOI

Uilenberg G., Rombach M.C., Perie N.M., Zwart D. Blood parasites of sheep in the Netherlands. II. Babesia motasi (Sporozoa, Babesiidae). Vet. Q. 1980;2:3–14. doi: 10.1080/01652176.1980.9693752. PubMed DOI

Uilenberg G., Top P.D., Arends P.J., Kool P.J., van Dijk J.E., van Schieveen P.B., Zwart D. [Autochthonous babesiosis in dogs in the Netherlands?] Tijdschr Diergeneeskd. 1985;110:93–98. PubMed

Matjila T.P., Nijhof A.M., Taoufik A., Houwers D., Teske E., Penzhorn B.L., de Lange T., Jongejan F. Autochthonous canine babesiosis in the Netherlands. Vet. Parasitol. 2005;131:23–29. doi: 10.1016/j.vetpar.2005.04.020. PubMed DOI

Jongejan F., Ringenier M., Putting M., Berger L., Burgers S., Kortekaas R., Lenssen J., van Roessel M., Wijnveld M., Madder M. Novel foci of Dermacentor reticulatus ticks infected with Babesia canis and Babesia caballi in the Netherlands and in Belgium. Parasit. Vectors. 2015;8:232. doi: 10.1186/s13071-015-0841-2. PubMed DOI PMC

Carpi G., Walter K.S., Mamoun C.B., Krause P.J., Kitchen A., Lepore T.J., Dwivedi A., Cornillot E., Caccone A., Diuk-Wasser M.A. Babesia microti from humans and ticks hold a genomic signature of strong population structure in the United States. BMC Genom. 2016;17:888. doi: 10.1186/s12864-016-3225-x. PubMed DOI PMC

Krause P.J. Human babesiosis. Int. J. Parasitol. 2019;49:165–174. doi: 10.1016/j.ijpara.2018.11.007. PubMed DOI

Hildebrandt A., Gray J.S., Hunfeld K.P. Human babesiosis in Europe: What clinicians need to know. Infection. 2013;41:1057–1072. doi: 10.1007/s15010-013-0526-8. PubMed DOI

Gonzalez L.M., Castro E., Lobo C.A., Richart A., Ramiro R., Gonzalez-Camacho F., Luque D., Velasco A.C., Montero E. First report of Babesia divergens infection in an HIV patient. Int. J. Infect. Dis. 2015;33:202–204. doi: 10.1016/j.ijid.2015.02.005. PubMed DOI

Morch K., Holmaas G., Frolander P.S., Kristoffersen E.K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 2015;33:37–38. doi: 10.1016/j.ijid.2014.12.034. PubMed DOI

Paleau A., Candolfi E., Souply L., De Briel D., Delarbre J.M., Lipsker D., Jouglin M., Malandrin L., Hansmann Y., Martinot M. Human babesiosis in Alsace. Med. Mal. Infect. 2020;50:486–491. doi: 10.1016/j.medmal.2019.08.007. PubMed DOI

Hildebrandt A., Hunfeld K.P., Baier M., Krumbholz A., Sachse S., Lorenzen T., Kiehntopf M., Fricke H.J., Straube E. First confirmed autochthonous case of human Babesia microti infection in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 2007;26:595–601. doi: 10.1007/s10096-007-0333-1. PubMed DOI

Arsuaga M., Gonzalez L.M., Lobo C.A., de la Calle F., Bautista J.M., Azcarate I.G., Puente S., Montero E. First Report of Babesia microti-Caused Babesiosis in Spain. Vector Borne Zoonotic Dis. 2016;16:677–679. doi: 10.1089/vbz.2016.1946. PubMed DOI PMC

Haselbarth K., Tenter A.M., Brade V., Krieger G., Hunfeld K.P. First case of human babesiosis in Germany—Clinical presentation and molecular characterisation of the pathogen. Int. J. Med. Microbiol. 2007;297:197–204. doi: 10.1016/j.ijmm.2007.01.002. PubMed DOI

Gorenflot A., Moubri K., Precigout E., Carcy B., Schetters T.P. Human babesiosis. Ann. Trop. Med. Parasitol. 1998;92:489–501. doi: 10.1080/00034983.1998.11813307. PubMed DOI

Foppa I.M., Krause P.J., Spielman A., Goethert H., Gern L., Brand B., Telford S.R., 3rd Entomologic and serologic evidence of zoonotic transmission of Babesia microti, eastern Switzerland. Emerg. Infect. Dis. 2002;8:722–726. doi: 10.3201/eid0807.010459. PubMed DOI PMC

Hunfeld K.P., Lambert A., Kampen H., Albert S., Epe C., Brade V., Tenter A.M. Seroprevalence of Babesia infections in humans exposed to ticks in midwestern Germany. J. Clin. Microbiol. 2002;40:2431–2436. doi: 10.1128/JCM.40.7.2431-2436.2002. PubMed DOI PMC

Gabrielli S., Calderini P., Cassini R., Galuppi R., Tampieri M.P., Pietrobelli M., Cancrini G. Human exposure to piroplasms in Central and Northern Italy. Vet. Ital. 2014;50:41–47. doi: 10.12834/VetIt.1302.13. PubMed DOI

Lempereur L., Shiels B., Heyman P., Moreau E., Saegerman C., Losson B., Malandrin L. A retrospective serological survey on human babesiosis in Belgium. Clin. Microbiol. Infect. 2015;21:96.e1–96.e7. doi: 10.1016/j.cmi.2014.07.004. PubMed DOI

Zukiewicz-Sobczak W., Zwolinski J., Chmielewska-Badora J., Galinska E.M., Cholewa G., Krasowska E., Zagorski J., Wojtyla A., Tomasiewicz K., Klapec T. Prevalence of antibodies against selected zoonotic agents in forestry workers from eastern and southern Poland. Ann. Agric. Environ. Med. 2014;21:767–770. doi: 10.5604/12321966.1129930. PubMed DOI

Zintl A., Mulcahy G., Skerrett H.E., Taylor S.M., Gray J.S. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 2003;16:622–636. doi: 10.1128/CMR.16.4.622-636.2003. PubMed DOI PMC

Tijsse-Klasen E., Koopmans M.P., Sprong H. Tick-borne pathogen—reversed and conventional discovery of disease. Front. Public Health. 2014;2:73. doi: 10.3389/fpubh.2014.00073. PubMed DOI PMC

Jahfari S., Hofhuis A., Fonville M., van der Giessen J., van Pelt W., Sprong H. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands. PLoS Negl. Trop. Dis. 2016;10:e0005042. doi: 10.1371/journal.pntd.0005042. PubMed DOI PMC

Gray J.S., Estrada-Pena A., Zintl A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019;64:149–165. doi: 10.1146/annurev-ento-011118-111932. PubMed DOI

Friedhoff K.T. Babesiosis of Domestic Animals and Man. CRC Press; Boca Raton, FL, USA: 1988. Transmission of Babesia; pp. 23–52.

Sprong H., Azagi T., Hoornstra D., Nijhof A.M., Knorr S., Baarsma M.E., Hovius J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit. Vectors. 2018;11:145. doi: 10.1186/s13071-018-2744-5. PubMed DOI PMC

Mehlhorn H., Shein E. The piroplasms: Life cycle and sexual stages. Adv. Parasitol. 1984;23:37–103. doi: 10.1016/s0065-308x(08)60285-7. PubMed DOI

Coipan E.C., Jahfari S., Fonville M., Maassen C.B., van der Giessen J., Takken W., Takumi K., Sprong H. Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Front. Cell Infect. Microbiol. 2013;3:36. doi: 10.3389/fcimb.2013.00036. PubMed DOI PMC

Takumi K., Sprong H., Hofmeester T.R. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit. Vectors. 2019;12:434. doi: 10.1186/s13071-019-3700-8. PubMed DOI PMC

Hofmeester T., Coipan E., Van Wieren S., Prins H., Takken W., Sprong H. Few vertebrate species dominate the Borrelia burgdorferi sl life cycle. Environ. Res. Lett. 2016;11:043001. doi: 10.1088/1748-9326/11/4/043001. DOI

Mihalca A.D., Sandor A.D. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe. Front. Cell Infect. Microbiol. 2013;3:56. doi: 10.3389/fcimb.2013.00056. PubMed DOI PMC

Martin L.B., Burgan S.C., Adelman J.S., Gervasi S.S. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology. Integr. Comp. Biol. 2016;56:1225–1237. doi: 10.1093/icb/icw064. PubMed DOI

Keesing F., Brunner J., Duerr S., Killilea M., Logiudice K., Schmidt K., Vuong H., Ostfeld R.S. Hosts as ecological traps for the vector of Lyme disease. Proc. Biol. Sci. 2009;276:3911–3919. doi: 10.1098/rspb.2009.1159. PubMed DOI PMC

LoGiudice K., Ostfeld R.S., Schmidt K.A., Keesing F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA. 2003;100:567–571. doi: 10.1073/pnas.0233733100. PubMed DOI PMC

Malandrin L., Jouglin M., Sun Y., Brisseau N., Chauvin A. Redescription of Babesia capreoli (Enigk and Friedhoff, 1962) from roe deer (Capreolus capreolus): Isolation, cultivation, host specificity, molecular characterisation and differentiation from Babesia divergens. Int. J. Parasitol. 2010;40:277–284. doi: 10.1016/j.ijpara.2009.08.008. PubMed DOI

Overzier E., Pfister K., Herb I., Mahling M., Bock G., Jr., Silaghi C. Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis. 2013;4:320–328. doi: 10.1016/j.ttbdis.2013.01.004. PubMed DOI

Michel A.O., Mathis A., Ryser-Degiorgis M.P. Babesia spp. in European wild ruminant species: Parasite diversity and risk factors for infection. Vet. Res. 2014;45:65. doi: 10.1186/1297-9716-45-65. PubMed DOI PMC

Bown K.J., Lambin X., Telford G.R., Ogden N.H., Telfer S., Woldehiwet Z., Birtles R.J. Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol. 2008;74:7118–7125. doi: 10.1128/AEM.00625-08. PubMed DOI PMC

Cayol C., Jaaskelainen A., Koskela E., Kyrolainen S., Mappes T., Siukkola A., Kallio E.R. Sympatric Ixodes-tick species: Pattern of distribution and pathogen transmission within wild rodent populations. Sci. Rep. 2018;8:16660. doi: 10.1038/s41598-018-35031-0. PubMed DOI PMC

Najm N.A., Meyer-Kayser E., Hoffmann L., Herb I., Fensterer V., Pfister K., Silaghi C. A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia, Germany. Ticks Tick Borne Dis. 2014;5:386–391. doi: 10.1016/j.ttbdis.2014.01.005. PubMed DOI

Dudek K. Impact of biodiversity on tick-borne diseases. Przegl Epidemiol. 2014;68:681–684. PubMed

Tomassone L., Berriatua E., De Sousa R., Duscher G.G., Mihalca A.D., Silaghi C., Sprong H., Zintl A. Neglected vector-borne zoonoses in Europe: Into the wild. Vet. Parasitol. 2018;251:17–26. doi: 10.1016/j.vetpar.2017.12.018. PubMed DOI

Lambin E.F., Tran A., Vanwambeke S.O., Linard C., Soti V. Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 2010;9:54. doi: 10.1186/1476-072X-9-54. PubMed DOI PMC

Tijsse-Klasen E., Fonville M., Reimerink J.H., Spitzen-van der Sluijs A., Sprong H. Role of sand lizards in the ecology of Lyme and other tick-borne diseases in the Netherlands. Parasit. Vectors. 2010;3:42. doi: 10.1186/1756-3305-3-42. PubMed DOI PMC

Krawczyk A.I., van Duijvendijk G.L.A., Swart A., Heylen D., Jaarsma R.I., Jacobs F.H.H., Fonville M., Sprong H., Takken W. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors. 2020;13:34. doi: 10.1186/s13071-020-3902-0. PubMed DOI PMC

Heylen D., Lasters R., Adriaensen F., Fonville M., Sprong H., Matthysen E. Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. Sci. Total Environ. 2019;670:941–949. doi: 10.1016/j.scitotenv.2019.03.235. PubMed DOI

Sprong H., Moonen S., van Wieren S.E., Hofmeester T.R. Effects of cattle grazing on Ixodes ricinus-borne disease risk in forest areas of the Netherlands. Ticks Tick Borne Dis. 2020;11:101355. doi: 10.1016/j.ttbdis.2019.101355. PubMed DOI

Bonnet S., Jouglin M., L’Hostis M., Chauvin A. Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus. Emerg. Infect. Dis. 2007;13:1208–1210. doi: 10.3201/eid1308.061560. PubMed DOI PMC

Kauffmann M., Rehbein S., Hamel D., Lutz W., Heddergott M., Pfister K., Silaghi C. Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol. Cell Probes. 2017;31:46–54. doi: 10.1016/j.mcp.2016.08.008. PubMed DOI

Zanet S., Trisciuoglio A., Bottero E., de Mera I.G., Gortazar C., Carpignano M.G., Ferroglio E. Piroplasmosis in wildlife: Babesia and Theileria affecting free-ranging ungulates and carnivores in the Italian Alps. Parasit. Vectors. 2014;7:70. doi: 10.1186/1756-3305-7-70. PubMed DOI PMC

Welc-Faleciak R., Werszko J., Cydzik K., Bajer A., Michalik J., Behnke J.M. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector Borne Zoonotic Dis. 2013;13:277–288. doi: 10.1089/vbz.2012.1136. PubMed DOI PMC

Duh D., Petrovec M., Bidovec A., Avsic-Zupanc T. Cervids as Babesiae hosts, Slovenia. Emerg. Infect. Dis. 2005;11:1121–1123. doi: 10.3201/eid1107.040724. PubMed DOI PMC

Garcia-Sanmartin J., Aurtenetxe O., Barral M., Marco I., Lavin S., Garcia-Perez A.L., Hurtado A. Molecular detection and characterization of piroplasms infecting cervids and chamois in Northern Spain. Parasitology. 2007;134:391–398. doi: 10.1017/S0031182006001569. PubMed DOI

Cezanne R., Mrowietz N., Eigner B., Duscher G.G., Glawischnig W., Fuehrer H.P. Molecular analysis of Anaplasma phagocytophilum and Babesia divergens in red deer (Cervus elaphus) in Western Austria. Mol. Cell Probes. 2017;31:55–58. doi: 10.1016/j.mcp.2016.07.003. PubMed DOI

Sawczuk M., Maciejewska A., Adamska M., Skotarczak B. [Roe deer (Capreolus capreolus) and red deer (Cervus elaphus) as a reservoir of protozoans from Babesia and Theileria genus in north-western Poland] Wiad Parazytol. 2005;51:243–247. PubMed

Karbowiak G., Demiaszkiewicz A.W., Pyziel A.M., Wita I., Moskwa B., Werszko J., Bien J., Gozdzik K., Lachowicz J., Cabaj W. The parasitic fauna of the European bison (Bison bonasus) (Linnaeus, 1758) and their impact on the conservation. Part 1. The summarising list of parasites noted. Acta Parasitol. 2014;59:363–371. doi: 10.2478/s11686-014-0252-0. PubMed DOI

Razanske I., Rosef O., Radzijevskaja J., Bratchikov M., Griciuviene L., Paulauskas A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol. Parasites Wildl. 2019;8:127–134. doi: 10.1016/j.ijppaw.2019.01.003. PubMed DOI PMC

Silaghi C., Hamel D., Pfister K., Rehbein S. Babesia species and co-infection with Anaplasma phagocytophilum in free-ranging ungulates from Tyrol (Austria) Tierärztliche Mschr. Vet. Med. Austria. 2011;98:268–274.

Michelet L., Delannoy S., Devillers E., Umhang G., Aspan A., Juremalm M., Chirico J., van der Wal F.J., Sprong H., Boye Pihl T.P., et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell Infect. Microbiol. 2014;4:103. doi: 10.3389/fcimb.2014.00103. PubMed DOI PMC

Lempereur L., Wirtgen M., Nahayo A., Caron Y., Shiels B., Saegerman C., Losson B., Linden A. Wild cervids are host for tick vectors of babesia species with zoonotic capability in Belgium. Vector Borne Zoonotic Dis. 2012;12:275–280. doi: 10.1089/vbz.2011.0722. PubMed DOI PMC

Schorn S., Pfister K., Reulen H., Mahling M., Silaghi C. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasit. Vectors. 2011;4:135. doi: 10.1186/1756-3305-4-135. PubMed DOI PMC

Adamska M., Skotarczak B. Molecular detecting of piroplasms in feeding and questing Ixodes ricinus ticks. Ann. Parasitol. 2017;63:21–26. doi: 10.17420/ap6301.80. PubMed DOI

Karlsson M.E., Andersson M.O. Babesia species in questing Ixodes ricinus, Sweden. Ticks Tick Borne Dis. 2016;7:10–12. doi: 10.1016/j.ttbdis.2015.07.016. PubMed DOI

Schotta A.M., Wijnveld M., Stockinger H., Stanek G. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.00489-17. PubMed DOI PMC

Egyed L., Elo P., Sreter-Lancz Z., Szell Z., Balogh Z., Sreter T. Seasonal activity and tick-borne pathogen infection rates of Ixodes ricinus ticks in Hungary. Ticks Tick Borne Dis. 2012;3:90–94. doi: 10.1016/j.ttbdis.2012.01.002. PubMed DOI

Joyner L.P., Davies S.F., Kendall S.B. The experimental transmission of Babesia divergens by Ixodes Ricinus. Exp. Parasitol. 1963;14:367–373. doi: 10.1016/0014-4894(63)90044-4. PubMed DOI

Bonnet S., Jouglin M., Malandrin L., Becker C., Agoulon A., L’Hostis M., Chauvin A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 2007;134:197–207. doi: 10.1017/S0031182006001545. PubMed DOI

Radzijevskaja J., Paulauskas A., Rosef O. Prevalence of Anaplasma phagocytophilum and Babesia divergens in Ixodes ricinus ticks from Lithuania and Norway. Int. J. Med Microbiol. 2008;298:218–221. doi: 10.1016/j.ijmm.2008.01.008. DOI

Donnelly J., Peirce M.A. Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. Int. J. Parasitol. 1975;5:363–367. doi: 10.1016/0020-7519(75)90085-5. PubMed DOI

Mackenstedt U., Gauer M., Mehlhorn H., Schein E., Hauschild S. Sexual cycle of Babesia divergens confirmed by DNA measurements. Parasitol. Res. 1990;76:199–206. doi: 10.1007/BF00930815. PubMed DOI

Andersson M.O., Vichova B., Tolf C., Krzyzanowska S., Waldenstrom J., Karlsson M.E. Co-infection with Babesia divergens and Anaplasma phagocytophilum in cattle (Bos taurus), Sweden. Ticks Tick Borne Dis. 2017;8:933–935. doi: 10.1016/j.ttbdis.2017.08.005. PubMed DOI

Lommano E., Bertaiola L., Dupasquier C., Gern L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl. Environ. Microbiol. 2012;78:4606–4612. doi: 10.1128/AEM.07961-11. PubMed DOI PMC

Meer-Scherrer L., Adelson M., Mordechai E., Lottaz B., Tilton R. Babesia microti infection in Europe. Curr. Microbiol. 2004;48:435–437. doi: 10.1007/s00284-003-4238-7. PubMed DOI

Hvidsten D., Frafjord K., Gray J.S., Henningsson A.J., Jenkins A., Kristiansen B.E., Lager M., Rognerud B., Slatsve A.M., Stordal F., et al. The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north-western Europe. Ticks Tick Borne Dis. 2020;11:101388. doi: 10.1016/j.ttbdis.2020.101388. PubMed DOI

Gray J.S., Dautel H., Estrada-Pena A., Kahl O., Lindgren E. Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip. Perspect. Infect. Dis. 2009;2009:593232. doi: 10.1155/2009/593232. PubMed DOI PMC

Burbaitė L., Csányi S. Red deer population and harvest changes in Europe. Acta Zool. Litu. 2010;20:179–188. doi: 10.2478/v10043-010-0038-z. DOI

Checa R., Lopez-Beceiro A.M., Montoya A., Barrera J.P., Ortega N., Galvez R., Marino V., Gonzalez J., Olmeda A.S., Fidalgo L.E., et al. Babesia microti-like piroplasm (syn. Babesia vulpes) infection in red foxes (Vulpes vulpes) in NW Spain (Galicia) and its relationship with Ixodes hexagonus. Vet. Parasitol. 2018;252:22–28. doi: 10.1016/j.vetpar.2018.01.011. PubMed DOI

Falkeno U., Tasker S., Osterman-Lind E., Tvedten H.W. Theileria annae in a young Swedish dog. Acta Vet. Scand. 2013;55:50. doi: 10.1186/1751-0147-55-50. PubMed DOI PMC

Rene-Martellet M., Moro C.V., Chene J., Bourdoiseau G., Chabanne L., Mavingui P. Update on epidemiology of canine babesiosis in Southern France. BMC Vet. Res. 2015;11:223. doi: 10.1186/s12917-015-0525-3. PubMed DOI PMC

Bartley P.M., Wilson C., Innes E.A., Katzer F. Detection of Babesia DNA in blood and spleen samples from Eurasian badgers (Meles meles) in Scotland. Parasitology. 2017;144:1203–1210. doi: 10.1017/S0031182017000476. PubMed DOI

Hornok S., Trauttwein K., Takacs N., Hodzic A., Duscher G.G., Kontschan J. Molecular analysis of Ixodes rugicollis, Candidatus Neoehrlichia sp. (FU98) and a novel Babesia genotype from a European badger (Meles meles) Ticks Tick Borne Dis. 2017;8:41–44. doi: 10.1016/j.ttbdis.2016.09.014. PubMed DOI

Beck R., Vojta L., Curkovic S., Mrljak V., Margaletic J., Habrun B. Molecular survey of Babesia microti in wild rodents in central Croatia. Vector Borne Zoonotic Dis. 2011;11:81–83. doi: 10.1089/vbz.2009.0260. PubMed DOI

Obiegala A., Pfeffer M., Pfister K., Karnath C., Silaghi C. Molecular examinations of Babesia microti in rodents and rodent-attached ticks from urban and sylvatic habitats in Germany. Ticks Tick Borne Dis. 2015;6:445–449. doi: 10.1016/j.ttbdis.2015.03.005. PubMed DOI

Turner C.M. Seasonal and age distributions of Babesia, Hepatozoon, Trypanosoma and Grahamella species in Clethrionomys glareolus and Apodemus sylvaticus populations. Parasitology. 1986;93 (Pt. 2):279–289. doi: 10.1017/S0031182000051453. PubMed DOI

Duh D., Petrovec M., Trilar T., Avsic-Zupanc T. The molecular evidence of Babesia microti infection in small mammals collected in Slovenia. Parasitology. 2003;126:113–117. doi: 10.1017/S0031182002002743. PubMed DOI

Kallio E.R., Begon M., Birtles R.J., Bown K.J., Koskela E., Mappes T., Watts P.C. First report of Anaplasma phagocytophilum and Babesia microti in rodents in Finland. Vector Borne Zoonotic Dis. 2014;14:389–393. doi: 10.1089/vbz.2013.1383. PubMed DOI PMC

Hartelt K., Oehme R., Frank H., Brockmann S.O., Hassler D., Kimmig P. Pathogens and symbionts in ticks: Prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany. Int. J. Med. Microbiol. 2004;293(Suppl. 37):86–92. doi: 10.1016/S1433-1128(04)80013-5. PubMed DOI

Asman M., Solarz K., Cuber P., Gasior T., Szilman P., Szilman E., Tondas E., Matzullok A., Kusion N., Florek K. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogorski district (Upper Silesia, Poland) Ann. Agric. Environ. Med. 2015;22:80–83. doi: 10.5604/12321966.1141373. PubMed DOI

Lempereur L., De Cat A., Caron Y., Madder M., Claerebout E., Saegerman C., Losson B. First molecular evidence of potentially zoonotic Babesia microti and Babesia sp. EU1 in Ixodes ricinus ticks in Belgium. Vector Borne Zoonotic Dis. 2011;11:125–130. doi: 10.1089/vbz.2009.0189. PubMed DOI

Karbowiak G., Biernat B., Stanczak J., Werszko J., Szewczyk T., Sytykiewicz H. The role of particular ticks developmental stages in the circulation of tick-borne pathogens in Central Europe. 6. Babesia. Ann. Parasitol. 2018;64:265–284. doi: 10.17420/ap6404.162. PubMed DOI

Topolovec J., Puntaric D., Antolovic-Pozgain A., Vukovic D., Topolovec Z., Milas J., Drusko-Barisic V., Venus M. Serologically detected "new" tick-borne zoonoses in eastern Croatia. Croat. Med. J. 2003;44:626–629. PubMed

Hunfeld K.P., Allwinn R., Peters S., Kraiczy P., Brade V. Serologic evidence for tick-borne pathogens other than Borrelia burgdorferi (TOBB) in Lyme borreliosis patients from midwestern Germany. Wien. Klin Wochenschr. 1998;110:901–908. PubMed

Belongia E.A. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector Borne Zoonotic Dis. 2002;2:265–273. doi: 10.1089/153036602321653851. PubMed DOI

Raileanu C., Moutailler S., Pavel I., Porea D., Mihalca A.D., Savuta G., Vayssier-Taussat M. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks. Front. Cell Infect. Microbiol. 2017;7:36. doi: 10.3389/fcimb.2017.00036. PubMed DOI PMC

Moutailler S., Valiente Moro C., Vaumourin E., Michelet L., Tran F.H., Devillers E., Cosson J.F., Gasqui P., Van V.T., Mavingui P., et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl. Trop. Dis. 2016;10:e0004539. doi: 10.1371/journal.pntd.0004539. PubMed DOI PMC

Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006;43:1089–1134. doi: 10.1086/508667. PubMed DOI

Krause P.J., Telford S.R., 3rd, Spielman A., Sikand V., Ryan R., Christianson D., Burke G., Brassard P., Pollack R., Peck J., et al. Concurrent Lyme disease and babesiosis. Evidence for increased severity and duration of illness. JAMA. 1996;275:1657–1660. doi: 10.1001/jama.1996.03530450047031. PubMed DOI

Morner T., Obendorf D.L., Artois M., Woodford M.H. Surveillance and monitoring of wildlife diseases. Rev. Sci. Tech. 2002;21:67–76. doi: 10.20506/rst.21.1.1321. PubMed DOI

Coipan C.E., van Duijvendijk G.L.A., Hofmeester T.R., Takumi K., Sprong H. The genetic diversity of Borrelia afzelii is not maintained by the diversity of the rodent hosts. Parasit. Vectors. 2018;11:454. doi: 10.1186/s13071-018-3006-2. PubMed DOI PMC

Hofmeester T.R., Sprong H., Jansen P.A., Prins H.H.T., van Wieren S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit. Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. PubMed DOI PMC

Hofmeester T.R., Krawczyk A.I., van Leeuwen A.D., Fonville M., Montizaan M.G.E., van den Berge K., Gouwy J., Ruyts S.C., Verheyen K., Sprong H. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit. Vectors. 2018;11:600. doi: 10.1186/s13071-018-3126-8. PubMed DOI PMC

Ruyts S.C., Frazer-Mendelewska E., Van Den Berge K., Verheyen K., Sprong H. Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris) Eur. J. Wildl. Res. 2017;63:43. doi: 10.1007/s10344-017-1104-7. DOI

Maas M., van Roon A., Dam-Deisz W., van der Giessen J. Geringe Verspreiding Van Vossenlintworm in Groningen. RIVM Briefrapport; De Bilt, The Netherlands: 2018.

Maas M., Mulder J., Montizaan M., Dam-Deisz W., Jaarsma R., Takumi K., van Roon A., Franssen F., van der Giessen J. Zoönotische Pathogenen bij de Wasbeerhond en Wasbeer in Nederland. RIVM Briefrapport; De Bilt, The Netherlands: 2018. pp. 1–28.

Guldemond A., Dijkman W., Keuper D. Wilde Zwijnen op Weg in Nederland. CLM Onderzoek en Advies; Culemborg, The Netherlands: 2015. pp. 1–48.

Rijks J.M., Montizaan M.G.E., Bakker N., de Vries A., Van Gucht S., Swaan C., van den Broek J., Grone A., Sprong H. Tick-Borne Encephalitis Virus Antibodies in Roe Deer, the Netherlands. Emerg. Infect. Dis. 2019;25:342–345. doi: 10.3201/eid2502.181386. PubMed DOI PMC

Estrada-Pena A., D’Amico G., Palomar A.M., Dupraz M., Fonville M., Heylen D., Habela M.A., Hornok S., Lempereur L., Madder M., et al. A comparative test of ixodid tick identification by a network of European researchers. Ticks Tick Borne Dis. 2017;8:540–546. doi: 10.1016/j.ttbdis.2017.03.001. PubMed DOI

Estrada-Peña A., Mihalca A.D., Petney T.N. Ticks of Europe and North Africa: A Guide to Species Identification. Springer; Berlin/Heidelberg, Germany: 2018.

Nagore D., Garcia-Sanmartin J., Garcia-Perez A.L., Juste R.A., Hurtado A. Detection and identification of equine Theileria and Babesia species by reverse line blotting: Epidemiological survey and phylogenetic analysis. Vet. Parasitol. 2004;123:41–54. doi: 10.1016/j.vetpar.2004.04.010. PubMed DOI

Schnittger L., Yin H., Qi B., Gubbels M.J., Beyer D., Niemann S., Jongejan F., Ahmed J.S. Simultaneous detection and differentiation of Theileria and Babesia parasites infecting small ruminants by reverse line blotting. Parasitol. Res. 2004;92:189–196. doi: 10.1007/s00436-003-0980-9. PubMed DOI

Altay K., Dumanli N., Aktas M. Molecular identification, genetic diversity and distribution of Theileria and Babesia species infecting small ruminants. Vet. Parasitol. 2007;147:161–165. doi: 10.1016/j.vetpar.2007.04.001. PubMed DOI

Schouls L.M., Van De Pol I., Rijpkema S.G., Schot C.S. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J. Clin. Microbiol. 1999;37:2215–2222. doi: 10.1128/JCM.37.7.2215-2222.1999. PubMed DOI PMC

Oines O., Radzijevskaja J., Paulauskas A., Rosef O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors. 2012;5:156. doi: 10.1186/1756-3305-5-156. PubMed DOI PMC

Kazimirova M., Hamsikova Z., Spitalska E., Minichova L., Mahrikova L., Caban R., Sprong H., Fonville M., Schnittger L., Kocianova E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit. Vectors. 2018;11:495. doi: 10.1186/s13071-018-3068-1. PubMed DOI PMC

Hrazdilova K., Mysliwy I., Hildebrand J., Bunkowska-Gawlik K., Janaczyk B., Perec-Matysiak A., Modry D. Paralogs vs. genotypes? Variability of Babesia canis assessed by 18S rDNA and two mitochondrial markers. Vet. Parasitol. 2019;266:103–110. doi: 10.1016/j.vetpar.2018.12.017. PubMed DOI

Gou H., Guan G., Liu A., Ma M., Xu Z., Liu Z., Ren Q., Li Y., Yang J., Chen Z., et al. A DNA barcode for Piroplasmea. Acta Trop. 2012;124:92–97. doi: 10.1016/j.actatropica.2012.07.001. PubMed DOI

Pan W., Byrne-Steele M., Wang C., Lu S., Clemmons S., Zahorchak R.J., Han J. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 2014;14:10. doi: 10.1186/1472-6750-14-10. PubMed DOI PMC

Tuvshintulga B., Sivakumar T., Battsetseg B., Narantsatsaral S.O., Enkhtaivan B., Battur B., Hayashida K., Okubo K., Ishizaki T., Inoue N., et al. The PCR detection and phylogenetic characterization of Babesia microti in questing ticks in Mongolia. Parasitol. Int. 2015;64:527–532. doi: 10.1016/j.parint.2015.07.007. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Coimbra-Dores M.J., Jaarsma R.I., Carmo A.O., Maia-Silva M., Fonville M., da Costa D.F.F., Brandao R.M.L., Azevedo F., Casero M., Oliveira A.C., et al. Mitochondrial sequences of Rhipicephalus and Coxiella endosymbiont reveal evidence of lineages co-cladogenesis. FEMS Microbiol. Ecol. 2020;96 doi: 10.1093/femsec/fiaa072. PubMed DOI

NDFF NDFF Dissemination Atlas. [(accessed on 4 September 2020)]; Available online: http://verspreidingsatlas.nl.

Team, R. Core . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2012. [(accessed on 4 September 2019)]. Available online: https://www.R-project.org.

Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Wickham H., François R., Henry L., Müller K. Dplyr: A Grammar of Data Manipulation. [(accessed on 4 September 2020)];2020 R Package Version 1.0.2. Available online: https://CRAN.R-project.org/package=dplyr.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...