Prokaryotic community diversity during bioremediation of crude oil contaminated oilfield soil: effects of hydrocarbon concentration and salinity
Jazyk angličtina Země Brazílie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33813729
PubMed Central
PMC8105486
DOI
10.1007/s42770-021-00476-5
PII: 10.1007/s42770-021-00476-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biodegradation, Community structure, Hydrocarbon mineralization, Hydrocarbonoclastic prokaryotes, Microbial ecology,
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- chlorid sodný metabolismus MeSH
- mikrobiota * genetika MeSH
- oxid uhličitý metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- ropa metabolismus mikrobiologie MeSH
- ropná a plynová pole mikrobiologie MeSH
- salinita MeSH
- uhlovodíky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- oxid uhličitý MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
- ropa MeSH
- uhlovodíky MeSH
Crude oil extracted from oilfield reservoirs brings together hypersaline produced water. Failure in pipelines transporting this mixture causes contamination of the soil with oil and hypersaline water. Soil salinization is harmful to biological populations, impairing the biodegradation of contaminants. We simulated the contamination of a soil from an oilfield with produced water containing different concentrations of NaCl and crude oil, in order to evaluate the effect of salinity and hydrocarbon concentration on prokaryote community structure and biodegradation activity. Microcosms were incubated in CO2-measuring respirometer. After the incubation, residual aliphatic hydrocarbons were quantified and were performed 16S rRNA gene sequencing. An increase in CO2 emission and hydrocarbon biodegradation was observed with increasing oil concentration up to 100 g kg-1. Alpha diversity decreased in oil-contaminated soils with an increase in the relative abundance of Actinobacteria and reduction of Bacteroidetes with increasing oil concentration. In the NaCl-contaminated soils, alpha diversity, CO2 emission, and hydrocarbon biodegradation decreased with increasing NaCl concentration. There was an increase in the relative abundance of Firmicutes and Proteobacteria and a reduction of Actinobacteria with increasing salt concentration. Our results highlight the need to adopt specific bioremediation strategies in soils impacted by mixtures of crude oil and hypersaline produced water.
Facultad de Ciencias Universidad del Tolima Ibagué Tolima Colombia
Instituto Federal de Educação Ciência e Tecnologia do Ceará IFCE Campus Camocim Camocim Ceará Brazil
Zobrazit více v PubMed
Atoufi DH, Lampert DJ. Impacts of oil and gas production on contaminant levels in sediments. Curr Pollut Rep. 2020;6:43–53. doi: 10.1007/s40726-020-00137-5. DOI
Abdol Hamid HR, Kassim WM, El Hishir A, El-Jawashi SA. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production. Environ Monit Assess. 2008;145(1-3):95–102. doi: 10.1007/s10661-007-0018-3. PubMed DOI
Stewart, M., Arnold, K. (2011). Produced water treatment: field manual. part 1 - produced water treating systems, p. 1-134.
Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol. 2007;9(3):801–813. doi: 10.1111/j.1462-2920.2006.01212.x. PubMed DOI
Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE. Is there a common water-activity limit for the three domains of life? ISME J. 2015;9:1333–1351. doi: 10.1038/ismej.2014.219. PubMed DOI PMC
Means JC. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar Chem. 1995;51:3–16. doi: 10.1016/0304-4203(95)00043-Q. DOI
Turner A, Rawling MC. The influence of salting out on the sorption of neutral organic compounds in estuaries. Water Res. 2001;35(18):4379–4389. doi: 10.1016/s0043-1354(01)00163-4. PubMed DOI
Mackay D, Shiu WY, Ma KC, Lee SC. Handbook of physical-chemical and environmental fate for organic chemicals. 2. Boca Raton: Taylor & Francis; 2006.
Pirnik MP, Atlas RM, Bartha R. Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol. 1974;119(3):868–878. doi: 10.1128/JB.119.3.868-878.1974. PubMed DOI PMC
Seklemova E, Pavlova A, Kovacheva K. Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation. 2001;12(5):311–316. doi: 10.1023/a:1014356223118. PubMed DOI
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Supplement1):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Pylro VS, Roesch L, Ortega JM, do Amaral, A. M. Brazilian microbiome project: revealing the unexplored microbial diversity—challenges and prospects. Microb Ecol. 2014;67:237–241. doi: 10.1007/s00248-013-0302-4. PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu F, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC
Seedorf H, Kittelmann S, Henderson G, Janssen PH. RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ. 2014;2:e494. doi: 10.7717/peerj.494. PubMed DOI PMC
Good IJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40(34):237–264. doi: 10.1093/biomet/40.3-4.237. DOI
Chao A. Nonparametric estimation of the numbers of classes in a population. Scand J Stat. 1984;11:265270.
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x. DOI
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed PMC
Franco I, Contin M, Bragato G, De Nobili M. Microbiological resilience of soils contaminated with crude oil. Geoderma. 2004;121(1):17–30. doi: 10.1016/j.geoderma.2003.10.002. DOI
Cury, J.D.E.C. (2002). Atividade microbiana e diversidades metabólica e genética em solo de mangue contaminado com petróleo. Master’s Dissertation. Universidade de São Paulo. São Paulo, Brazil.
Hernández-López EL, Ayala M, Vazquez-Duhalt R. Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol. 2015;33:1019–1027. doi: 10.1080/10916466.2015.1014960. DOI
Atlas RM, Bartha R. Microbial ecology: fundamentals and applications. 4. California: Menlo Park; 1998.
Fernández, P.S.H. (2016). Predação de protozoários sobre ultramicrocélulas bacterianas degradadoras de hidrocarbonetos e seu efeito sobre a biorremediação de agregados de solo contaminados com petróleo. Master’s Dissertation, Universidade Federal de Viçosa, Brasil.
El-Tarabily KA. Total microbial activity composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Can J Microbiol. 2002;48(2):176–182. doi: 10.1139/w01-140. PubMed DOI
Labud V, Garcia C, Hernandez T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere. 2007;66(10):1863–1871. doi: 10.1016/j.chemosphere.2006.08.021. PubMed DOI
Camacho-Montealegre CM, Rodrigues EM, Tótola MR. Microbial diversity and bioremediation of rhizospheric soils from Trindade Island - Brazil. J Environ Manag. 2019;236:358–364. doi: 10.1016/j.jenvman.2019.02.013. PubMed DOI
Yang S, Wen X, Zhao L, Shi Y, Jin H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route. PLoS ONE. 2014;9(5):e96552. doi: 10.1371/journal.pone.0096552. PubMed DOI PMC
Atlas RM. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev. 1981;45:180–209. doi: 10.1128/MR.45.1.180-209.1981. PubMed DOI PMC
Rodrigues EM, Kalks KHM, Tótola MR. Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island – Brazil. J Environ Manag. 2015;156:15–22. doi: 10.1016/j.jenvman.2015.03.016. PubMed DOI
Kim JS, Crowley DE. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol. 2007;73(14):45794591–45794591. doi: 10.1128/AEM.01372-06. PubMed DOI PMC
Chaturvedi S, Khurana SMP. Importance of Actinobacteria for bioremediation. In: Khurana S, Gaur R, editors. Plant Biotechnology: Progress in Genomic Era. Singapore: Springer; 2019.
Lang S, Philp JC. Surface active lipids in rhodococci. Antonie Van Leuwenhoek. 1998;74:59–70. doi: 10.1023/A:1001799711799. PubMed DOI
Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol. 2012;112:8390. doi: 10.1016/j.biortech.2012.02.059. PubMed DOI
Morais D, Pylro V, Clark IM, Hirsch PR, Tótola MR. Responses of microbial community from tropical pristine coastal soil to crude oil contamination. PeerJ. 2016;4:e1733. doi: 10.7717/peerj.1733. PubMed DOI PMC
McGowan L, Herbert R, Muyzer G. A comparative study of hydrocarbon degradation by Marinobacter sp., Rhodococcus sp. and Corynebacterium sp. isolated from different mat systems. Ophelia. 2004;58(3):271–281. doi: 10.1080/00785236.2004.10410235. DOI
Kurniati TH, Rusmana I, Suryani A, Mubarik NR. Degradation of polycyclic aromatic hydrocarbon Pyrene by biosurfactant-producing bacteria Gordonia cholesterolivorans AMP 10. J Biol Biol Educ. 2016;8(3):336–343. doi: 10.15294/biosaintifika.v8i3.6448. DOI
Rodrigues EM, Teixeira AVNC, Cesar DE, Tótola MR. Strategy to improve crude oil biodegradation in oligotrophic aquatic environments: W/O/W fertilized emulsions and hydrocarbonoclastic bacteria. Braz J Microbiol. 2020;51:1159–1168. doi: 10.1007/s42770-020-00244-x. PubMed DOI PMC
Qiao N, Shao Z. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol. 2010;108(4):1207–1216. doi: 10.1111/j.1365-2672.2009.04513.x. PubMed DOI
Da Silva FSP, Pylro VS, Fernandes PL, Barcelos GS, Kalks KHM, Schaefer CEGR, Tótola MR. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles. 2015;19(3):561–572. doi: 10.1007/s00792-015-0740-7. PubMed DOI
Fernandes PL, Rodrigues EM, Paiva FR, Ayupe BAL, McInerney MJ, Tótola MR. Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel. 2016;180:551–557. doi: 10.1016/j.fuel.2016.04.080. DOI
Minai-Tehrani D, Herfatmanesh A, Azari-Dehkordi F, Minuoi S. Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pak J Biol Sci. 2006;9(8):1531–1535. doi: 10.3923/pjbs.2006.1531.1535. DOI
McGenity TJ. Halophilic hydrocarbon degraders. In: Timmis KN, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verlag; 2010. pp. 1939–1951.
Ulrich AC, Guigard SE, Foght JM, Semple KM, Pooley K, Armstrong JE, Biggar KW. Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation. 2009;20(1):27–38. doi: 10.1007/s10532-008-9196-0. PubMed DOI
Qin X, Tang JC, Li DS, Zhang QM. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol. 2012;55:210–217. doi: 10.1111/j.1472-765X.2012.03280.x. PubMed DOI
Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28(1):56–63. doi: 10.1038/sj/jim/7000176. PubMed DOI
Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Evol Microbiol. 1998;48:339–348. doi: 10.1099/00207713-48-2-339. PubMed DOI
Syutsubo K, Kishira H, Harayama S. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol. 2001;3:371–379. doi: 10.1046/j.1462-2920.2001.00204.x. PubMed DOI
Hara A, Syutsubo K, Harayama S. Alcanivorax which prevails in oil contaminated sea water exhibits broad substrate specificity for alkane degradation. Environ Microbiol. 2003;5:746–753. doi: 10.1046/j.1468-2920.2003.00468.x. PubMed DOI
Scoma A, Boon N. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2. Front Microbiol. 2016;7:729. doi: 10.3389/fmicb.2016.00729. PubMed DOI PMC
Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol. 2011;90:305–312. doi: 10.1007/s00253-010-3049-6. PubMed DOI
Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol. 2007;57(Pt 2):250–254. doi: 10.1099/ijs.0.64522-0. PubMed DOI
Gomes MB, Gonzales-Limache EE, Sousa STP, Dellagnezze BM, Sartoratto A, Silva LCF, Gieg LM, Valoni E, Souza RS, Torres APR, Sousa MP, De Paula SO, Silva CC, Oliveira VM. Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegrad. 2016;126:231–242. doi: 10.1016/j.ibiod.2016.08.014. DOI
Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS. Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. J Environ Manag. 2017;193:576–583. doi: 10.1016/j.jenvman.2017.02.054. PubMed DOI
Kuhlmann AU, Bremer E. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol. 2002;68:772–783. doi: 10.1128/AEM.68.2.772-783.2002. PubMed DOI PMC
Höper D, Bernhardt J, Hecker M. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Proteomics. 2006;6:1550–1562. doi: 10.1002/pmic.200500197. PubMed DOI
Ghani M, Ansari A, Aman A, Zohra RR, Siddiqui Nn, Qader SA. Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pak J Pharm Sci. 2013;26(4):691–697. PubMed
Hui Y, Huang G, An C, Wei J. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system. J Hazard Mater. 2011;190(1-3):883–890. doi: 10.1016/j.jhazmat.2011.04.026. PubMed DOI
Bezza FA, Chirwa EMN. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. 2016;144:635–644. doi: 10.1016/j.chemosphere.2015.08.027. PubMed DOI
Koenigsberg SS, Sandefur CA. The use of oxygen release compound for the accelerated bioremediation of aerobically degradable contaminants: the advent of time-release electron acceptors. Remediat J. 1999;10:3–29. doi: 10.1002/rem.3440100103. DOI
Zhao B, Wang H, Mao X, Li R. Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol. 2009;58:205–210. doi: 10.1007/s00284-008-9309-3. PubMed DOI
Wang, X., Zheng, J., Han, Z., Chen, H., 2019. Bioremediation of crude oil-contaminatedsoil by hydrocarbon-degrading microorganisms immobilized on humic acid-modifiedbiofuel ash. Journal of Chemical Technology, Biot.10.1002/jctb.5969.
Martins LF, Peixoto RS. Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol. 2012;43:865–872. doi: 10.1590/S1517-83822012000300003. PubMed DOI PMC