Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33925980
PubMed Central
PMC8145813
DOI
10.3390/genes12050642
PII: genes12050642
Knihovny.cz E-zdroje
- Klíčová slova
- Apodemus agrarius, Holocene bottleneck, MaxEnt, Muridae, environmental niche model, glacial expansion, mitochondrial DNA, phylogeny,
- MeSH
- biomasa MeSH
- fylogeneze MeSH
- geologické jevy MeSH
- klimatické změny * MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce * MeSH
- Muridae klasifikace genetika MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
We investigated the evolutionary history of the striped field mouse to identify factors that initiated its past demographic changes and to shed light on the causes of its current genetic structure and trans-Eurasian distribution. We sequenced mitochondrial cyt b from 184 individuals, obtained from 35 sites in central Europe and eastern Mongolia. We compared genetic analyses with previously published historical distribution models and data on environmental and climatic changes. The past demographic changes displayed similar population trends in the case of recently expanded clades C1 and C3, with the glacial (MIS 3-4) expansion and postglacial bottleneck preceding the recent expansion initiated in the late Holocene and were related to environmental changes during the upper Pleistocene and Holocene. The past demographic trends of the eastern Asian clade C3 were correlated with changes in sea level and the formation of new land bridges formed by the exposed sea shelf during the glaciations. These data were supported by reconstructed historical distribution models. The results of our genetic analyses, supported by the reconstruction of the historical spatial distributions of the distinct clades, confirm that over time the local populations mixed as a consequence of environmental and climatic changes resulting from cyclical glaciation and the interglacial period during the Pleistocene.
International Institute Zittau Technical University Dresden Markt 23 D 02763 Zittau Germany
Senckenberg Museum of Natural History Görlitz Am Museum 1 D 02826 Görlitz Germany
Zobrazit více v PubMed
Hewitt G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC
Hewitt G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996;58:247–276. doi: 10.1006/bijl.1996.0035. DOI
Parmesan C., Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI
Taberlet P., Fumagalli L., Wust-Saucy A.G., Cosson J.F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 1998;7:453–464. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI
Horáček I., Sánchez Marco A. Comments on the Weichselian small mammal assemblages in Czechoslovakia and their stratigraphical interpretation. Neues Jahrb. für Geol. und Paläontologie-Monatshefte. 1984;1984:560–576. doi: 10.1127/njgpm/1984/1984/560. DOI
Knitlová M., Horáček I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe. PLoS One. 2017;12:1–23. doi: 10.1371/journal.pone.0173668. PubMed DOI PMC
Knitlová M., Horáček I. Genus Apodemus in the Pleistocene of Central Europe: When did the extant taxa appear? Foss. Impr. 2017;74:460–481. doi: 10.2478/if-2017-0024. DOI
Björklund M., Ranta E., Kaitala V., Bach L.A., Lundberg P., Stenseth N.C. Quantitative trait evolution and environmental change. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0004521. PubMed DOI PMC
Hendry A.P., Farrugia T.J., Kinnison M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008;17:20–29. doi: 10.1111/j.1365-294X.2007.03428.x. PubMed DOI
Kanarek A.R., Webb C.T. Allee effects, adaptive evolution, and invasion success. Evol. Appl. 2010;3:122–135. doi: 10.1111/j.1752-4571.2009.00112.x. PubMed DOI PMC
Williams S.E., Shoo L.P., Isaac J.L., Hoffmann A.A., Langham G. Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biol. 2008;6:e325. doi: 10.1371/journal.pbio.0060325. PubMed DOI PMC
Hoffmann A.A., Sgrò C.M. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI
Whitney K.D., Gabler C.A. Rapid evolution in introduced species, “invasive traits” and recipient communities: Challenges for predicting invasive potential. Divers. Distrib. 2008;14:569–580. doi: 10.1111/j.1472-4642.2008.00473.x. DOI
Spitzenberger F., Engelberger S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae) Nový pohled na dynamiku západního okraje rozšíření myšice temnopásé. Lynx, n. s. 2014;79:69–79.
Bazhenov Y.A., Pavlenko M.V., Korablev V.P., Kardash A.I. Current distribution of the striped field mouse (Apodemus agrarius Pallas, 1771) in Eastern Transbaikalia: New findings in the disjunction area. Russ. J. Biol. Invasions. 2015;6:1–5. doi: 10.1134/S2075111715010026. DOI
Pereverzeva V.V., Pavlenko M.V. Diversity of the mitochondrial DNA cytochrome b gene of the field mouse Apodemus agrarius Pallas, 1771 in the south of the Russian Far East. Biol. Bull. 2014;41:1–11. doi: 10.1134/S1062359013060101. PubMed DOI
Pereverzeva V.V., Primak A.A., Pavlenko M.V., Dokuchaev N.E., Evdokimova A.A. Genetic features and the putative sources of formation of isolated populations of the striped field mouse Apodemus agrarius Pallas, 1771 in Magadan oblast. Russ. J. Biol. Invasions. 2017;8:87–100. doi: 10.1134/S2075111717010106. DOI
Frynta D., Exnerova A., Novarova A. Intraspecific behavioural interactions in the Striped-field mouse (Apodemus agrarius) and its interspecific relationships to the Wood mouse (Apodemus sylvaticus): Dyadic encounters in a neutral cage. Acta Soc. Zool. Bohem. 1995;59:53–62.
Tulis F., Ambros M., Balaž I., Žiak D., Hulejová Sládkovičová V., Miklós P., Dudich A., Stollmann A. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica. 2016;43:67–73.
Andrzejewski R., Mazurkiewicz M. Abundance of food supply and size of the bank vole’s home range. Acta Theriol. (Warsz.) 1976;21:237–253. doi: 10.4098/AT.arch.76-22. DOI
Ivanov D. Chronology of Micromammal Assemblages on the Territory of Belarus in the Late Glacial and Holocene Na Terytorium Białorusi. Słupskie Pr. Geol. 2016;13:179–196.
Markova A., Puzachenko A. Preliminary Analysis of European Small Mammal Faunas of the Eemian Interglacial: Species Composition and Species Diversity at a Regional Scale. Quaternary. 2018;1:9. doi: 10.3390/quat1020009. DOI
Ricánková V.P., Robovský J., Riegert J., Zrzavý J. Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate retreat to Siberian steppes rather than extinction. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep12682. PubMed DOI PMC
Michaux J.R., Magnanou E., Paradis E., Nieberding C., Libois R. Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol. Ecol. 2003;12:685–697. doi: 10.1046/j.1365-294X.2003.01752.x. PubMed DOI
Rajabi-Maham H., Orth A., Bonhomme F. Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe. Mol. Ecol. 2008;17:627–641. doi: 10.1111/j.1365-294X.2007.03601.x. PubMed DOI
Suzuki H., Shimada T., Terashima M., Tsuchiya K., Aplin K. Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol. Phylogenet. Evol. 2004;33:626–646. doi: 10.1016/j.ympev.2004.08.003. PubMed DOI
Musser G.G., Carleton M.D. Superfamily Muroidea. In: Wilson D.E., Reeder D.M., editors. Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press; Baltimore, MD USA: 2005. pp. 1261–1262.
Atopkin D.M., Bogdanov A.S., Chelomina G.N. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 2007;43:665–676. doi: 10.1134/S1022795407060105. PubMed DOI
Latinne A., Navascués M., Pavlenko M., Kartavtseva I., Ulrich R.G., Tiouchichine M.L., Catteau G., Sakka H., Quéré J.P., Chelomina G., et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 2020;100:19–31. doi: 10.1007/s42991-019-00001-0. DOI
Andersen L.W., Jacobsen M., Vedel-Smith C., Jensen T.S. Mice as stowaways? Colonization history of Danish striped field mice. Biol. Lett. 2017;13:20170064. doi: 10.1098/rsbl.2017.0064. PubMed DOI PMC
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Irwin D.M., Kocher T.D., Wilson A.C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 1991;32:128–144. doi: 10.1007/BF02515385. PubMed DOI
Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. doi: 10.14601/phytopathol_mediterr-14998u1.29. DOI
Drummond A.J., Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC
Leigh J.W., Bryant D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 2004;13:853–864. doi: 10.1046/j.1365-294X.2003.02004.x. PubMed DOI
Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Miller M.P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 2005;96:722–724. doi: 10.1093/jhered/esi119. PubMed DOI
Harpending H.C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 1994;66:591–600. PubMed
Rogers A.R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992;9:552–569. doi: 10.1093/oxfordjournals.molbev.a040727. PubMed DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC
Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–925. doi: 10.1093/genetics/147.2.915. PubMed DOI PMC
Ramos-Onsins S.E., Rozas J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002;19:2092–2100. doi: 10.1093/oxfordjournals.molbev.a004034. PubMed DOI
Rogers A.R. Genetic Evidence for a Pleistocene Population Explosion. Evolution (N. Y). 1995;49:608–615. doi: 10.1111/j.1558-5646.1995.tb02297.x. PubMed DOI
Pacifici M., Santini L., Di Marco M., Baisero D., Francucci L., Grottolo Marasini G., Visconti P., Rondinini C. Generation length for mammals. Nat. Conserv. 2013;5:89–94. doi: 10.3897/natureconservation.5.5734. DOI
Suzuki H., Sato J.J., Tsuchiya K., Luo J., Zhang Y., Wang Y., Jiang X. Molecular phylogeny of wood mice ( Apodemus, Muridae) in East Asia. Biol. J. Linn. Soc. 2003:469–481. doi: 10.1046/j.1095-8312.2003.00253.x. DOI
Hanazaki K., Tomozawa M., Suzuki Y., Kinoshita G., Yamamoto M., Irino T., Suzuki H. Estimation of Evolutionary Rates of Mitochondrial DNA in Two Japanese Wood Mouse Species Based on Calibrations with Quaternary Environmental Changes. Zoolog. Sci. 2017;34:201–210. doi: 10.2108/zs160169. PubMed DOI
Suzuki Y., Tomozawa M., Koizumi Y., Tsuchiya K., Suzuki H. Estimating the molecular evolutionary rates of mitochondrial genes referring to Quaternary ice age events with inferred population expansions and dispersals in Japanese Apodemus. BMC Evol. Biol. 2015;15:2–4. doi: 10.1186/s12862-015-0463-5. PubMed DOI PMC
Drummond A.J., Rambaut A., Shapiro B., Pybus O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005;22:1185–1192. doi: 10.1093/molbev/msi103. PubMed DOI
Ho S.Y.W., Lanfear R., Phillips M.J., Barnes I., Thomas J.A., Kolokotronis S.-O.O., Shapiro B. Bayesian estimation of substitution rates from ancient DNA sequences with low information content. Syst. Biol. 2011;60:366–375. doi: 10.1093/sysbio/syq099. PubMed DOI
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Fan Z., Liu S., Liu Y., Liao L., Zhang X., Yue B. Phylogeography of the South China field mouse (Apodemus draco) on the Southeastern Tibetan Plateau reveals high genetic diversity and Glacial Refugia. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0038184. PubMed DOI PMC
Yue H., Fan Z., Liu S., Liu Y., Song Z., Zhang X. A Mitogenome of the Chevrier’s Field Mouse (Apodemus chevrieri ) and Genetic Variations Inferred from the Cytochrome b Gene. DNA Cell Biol. 2012;31:460–469. doi: 10.1089/dna.2011.1301. PubMed DOI
Cornuet J.M., Pudlo P., Veyssier J., Dehne-Garcia A., Gautier M., Leblois R., Marin J.M., Estoup A. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–1189. doi: 10.1093/bioinformatics/btt763. PubMed DOI
Storz J.F., Beaumont M.A. Testing for genetic evidence of population expansion and contraction: An empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution. 2002;56:154–166. doi: 10.1111/j.0014-3820.2002.tb00857.x. PubMed DOI
Cornuet J.M., Santos F., Beaumont M.A., Robert C.P., Marin J.M., Balding D.J., Guillemaud T., Estoup A. Inferring population history with DIY ABC: A user-friendly approach to approximate Bayesian computation. Bioinformatics. 2008;24:2713–2719. doi: 10.1093/bioinformatics/btn514. PubMed DOI PMC
Phillips S.J., Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Bintanja R., van de Wal R.S.W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature. 2008;454:869–872. doi: 10.1038/nature07158. PubMed DOI
Ehlers J., Gibbard P.L., Hughes P.D. Quaternary glaciations—extent and chronology. A Closer Look. Dev. Quat. Sci. 2011;15:1–1108.
Ehlers J., Astakhov V., Gibbard P.L., Mangerud J., Svendsen J.I. Late Pleistocene in Eurasia. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013.
Wright J.D. Quaternary Geochronology: Methods and Applications. American Geophysical Union; Washington, DC, USA: 2013. Global Climate Change in Marine Stable Isotope Records; pp. 427–433. DOI
Aguilar J.P., Pélissié T., Sigé B., Michaux J. Occurrence of the Stripe Field Mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. Comptes Rendus-Palevol. 2008;7:217–225. doi: 10.1016/j.crpv.2008.02.004. DOI
Izvarin E.P., Ulitko A.I. Stratigraphical and paleotheriological description of Holocene sediments from Nizhneirginsky grotto (middle Urals) In: Hajna N.Z., Mihevc A., Năpăruș-Aljančič M., editors. Proceedings of the Quaternary Stratigraphy and Karst and Cave Sediments. ZRC Publishing; Postojna, Slovenia: 2018. pp. 31–33.
Jin C., Kawamura Y. Late Pleistocene mammal fauna in Northeast China Mammal fauna including woolly mammoth and woolly rhinoceros in association with Paleolithic tools. Earth Sci. (Chikyu Kagaku) 1996;50:3150330. doi: 10.15080/agcjchikyukagaku.50.4_315. DOI
Kawamura Y. Quaternary Rodent Faunas in the Japanese Islands (Part 2) Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Mineral. 1989;54:1–235.
Kotsakis T., Abbazzi L., Angelone C., Argenti P., Barisone G., Fanfani F., Marcolini F., Masini F. Plio-Pleistocene biogeography of Italian mainland micromammals. In: Reumer J.W., Wessels W., editors. Distribution and Migration of Tertiary Mammals in Eurasia. Deinsea; Rotterdam, The Netherlads: 2003. pp. 313–342.
Kowalski K. Pleistocene rodents of Europe. Folia Quat. 2001;72:3–389.
Popov V. A Pleistocene record of Apodemus agrarius (Pallas, 1771) (Mammalia: Rodentia) in the Magura Cave, Bulgaria. Acta Zool. Bulg. 2017;69:121–124.
Zhang Y.X., Li Y.X., Wang W., Gong H.J. Middle pleistocene mammalian fauna of shanyangzhai cave in Qinhuangdao area, China and its zoogeographical significance. Chin. Sci. Bull. 2010;55:72–76. doi: 10.1007/s11434-009-0360-7. DOI
Koh H.S., Jang K.H., Shaner P.J., Lee B.K., Yang B.G., Heo S.W. Genetic divergence of Taiwan striped field mouse (Apodemus agrarius insulaemus): Sequence analysis with mtDNA cytochrome b gene. Bull. Nat. Sci. 2012;26:7–12.
Koh H.S., Lee W.J., Kocher T.D. The genetic relationships of two subspecies of striped field mice, Apodemus agrarius coreae and Apodemus agrarius chejuensis. Heredity (Edinb) 2000;85:30–36. doi: 10.1046/j.1365-2540.2000.00723.x. PubMed DOI
Koh H.S., Shaner P.J., Csorba G., Wang Y.J., Jang K.H., Lee J.H. Comparative genetics of Apodemus agrarius (Rodentia: Mammalia) from insular and continental eurasia population: Cytochrome b sequnces analyses. Acta Zool. Acad. Sci. Hung. 2014;60:73–84.
Sakka H., Quéré J.-P., Kartavtseva I., Pavlenko M., Chelomina G., Atopkin D., Bogdanov A., Michaux J. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: Evidence of Quaternary climatic changes in their genetic structure. Biol. J. Linn. Soc. 2010;100:797–821. doi: 10.1111/j.1095-8312.2010.01477.x. DOI
DeGiorgio M., Degnan J.H., Rosenberg N.A. Coalescence-Time Distributions in a Serial Founder Model of Human Evolutionary History. Genetics. 2011;189:579–593. doi: 10.1534/genetics.111.129296. PubMed DOI PMC
Ramachandran S., Deshpande O., Roseman C.C., Rosenberg N.A., Feldman M.W., Cavalli-Sforza L.L. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. USA. 2005;102:15942–15947. doi: 10.1073/pnas.0507611102. PubMed DOI PMC
Grant W.S. Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J. Hered. 2015;106:333–346. doi: 10.1093/jhered/esv020. PubMed DOI
Ballard J.W.O., Whitlock M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004;13:729–744. doi: 10.1046/j.1365-294X.2003.02063.x. PubMed DOI
Grant W.S., Liu M., Gao T.X., Yanagimoto T. Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species) Mol. Phylogenet. Evol. 2012;65:203–212. doi: 10.1016/j.ympev.2012.06.006. PubMed DOI
Grant W.S., Cheng W. Incorporating deep and shallow components of genetic structure into the management of Alaskan red king crab. Evol. Appl. 2012;5:820–837. doi: 10.1111/j.1752-4571.2012.00260.x. PubMed DOI PMC
Bandelt H.-J. Clock debate: When times are a-changin’: Time dependency of molecular rate estimates: Tempest in a teacup. Heredity (Edinb). 2008;100:1–2. doi: 10.1038/sj.hdy.6801054. PubMed DOI
Emerson B.C. Alarm Bells for the Molecular Clock? No Support for Ho et al.’s Model of Time-Dependent Molecular Rate Estimates. Syst. Biol. 2007;56:337–345. doi: 10.1080/10635150701258795. PubMed DOI
Ho S.Y.W., Shapiro B., Phillips M.J., Cooper A., Drummond A.J. Evidence for Time Dependency of Molecular Rate Estimates. Syst. Biol. 2007;56:515–522. doi: 10.1080/10635150701435401. PubMed DOI
Ye L., Yu G., Liao M., Li Y. Dynamic simulations of the late MIS 3 transgressions in the East China Sea and southern Yellow Sea, China. Acta Oceanol. Sin. 2016;35:48–55. doi: 10.1007/s13131-016-0919-5. DOI
Chung C.-H., Lim H.S., Yoon H.I. Vegetation and climate changes during the Late Pleistocene to Holocene inferred from pollen record in Jinju area, South Korea. Geosci. J. 2006;10:423–431. doi: 10.1007/BF02910436. DOI
Wang P., Sun X. Last Glacial Maximum in China: Comparison between land and sea. Catena. 1994;23:341–353. doi: 10.1016/0341-8162(94)90077-9. DOI
Xue X., Zhou W., Zhou J., Head J., Jull A.J.T. Biological records of paleoclimate and paleoenvironment changes from Guanzhong area, Shaanxi Province during the last glacial maximum. Chin. Sci. Bull. 2000;45:853–857. doi: 10.1007/BF02887417. DOI
Kawahata H., Ohshima H. Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Glob. Planet. Chang. 2004;41:251–273. doi: 10.1016/j.gloplacha.2004.01.011. DOI
Xu D., Lu H., Wu N., Liu Z. 30 000-Year vegetation and climate change around the East China Sea shelf inferred from a high-resolution pollen record. Quat. Int. 2010;227:53–60. doi: 10.1016/j.quaint.2010.04.015. DOI
Zheng Z., Huang K., Deng Y., Cao L., Yu S., Suc J.-P., Berne S., Guichard F. A ∼200 ka pollen record from Okinawa Trough: Paleoenvironment reconstruction of glacial-interglacial cycles. Sci. China Earth Sci. 2013;56:1731–1747. doi: 10.1007/s11430-013-4619-0. DOI
Badejo A.O., Choi B.H., Cho H.G., Yi H.-I., Shin K.H. Environmental change in Yellow Sea during the last deglaciation to the early Holocene (15,000-8,000 BP) Quat. Int. 2016;392:112–124. doi: 10.1016/j.quaint.2015.07.060. DOI
Liu K. Quaternary history of the temperate forests of China. Quat. Sci. Rev. 1988;7:1–20. doi: 10.1016/0277-3791(88)90089-3. DOI
Kim D., Park B.K.-K., Shin I.C. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary. Geo-Marine Lett. 1999;18:189–194. doi: 10.1007/s003670050067. DOI
Kawamura Y. Quaternary Rodent Faunas in the Japanese Islands (Part 1) Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Mineral. 1988;53:31–348.
Kawamura Y., Kamei T., Taruno H. Middle and Late Pleistocene Mammalian Faunas in Japan. Quart. Res. 1989;28:317–326. doi: 10.4116/jaqua.28.317. DOI
Motokawa M. Biogeography of Living Mammals in the Ryukyu Islands. Tropics. 2000;10:63–71. doi: 10.3759/tropics.10.63. DOI
Park S.-C., Yoo D.-G., Lee C.-W., Lee E.-I. Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo-Mar. Lett. 2000;20:64–71. doi: 10.1007/s003670000039. DOI
Sato J.J. A Review of the Processes of Mammalian Faunal Assembly in Japan: Insights from Molecular Phylogenetics. Springer; Tokyo, Japan: 2017.
Yasuda S.P., Vogel P., Tsuchiya K., Han S., Lin L., Suzuki H. Phylogeographic patterning of mtDNA in the widely distributed harvest mouse ( Micromys minutus ) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene. Can. J. Zool. 2005;83:1411–1420. doi: 10.1139/z05-139. DOI
Suzuki H., Filippucci M.G., Chelomina G.N., Sato J.J., Serizawa K., Nevo E. A biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequences. Biochem. Genet. 2008;46:329–346. doi: 10.1007/s10528-008-9149-7. PubMed DOI
Herzig-Straschil B., Bihari Z., Spitzenberger F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Ann. des Naturhistorischen Museums Wien. 2004;105B:421–428.
Stanko M. Apodemus agrarius (Pallas 1771) (Rodentia, Muridae) in Slovakia. Equilibria s.r.o.; Kosice, Slovakia: 2014.
Granoszewski W., Demske D., Nita M., Heumann G., Andreev A.A. Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal. Glob. Planet. Chang. 2005;46:187–198. doi: 10.1016/j.gloplacha.2004.09.017. DOI
Tarasov P., Bezrukova E., Karabanov E., Nakagawa T., Wagner M., Kulagina N., Letunova P., Abzaeva A., Granoszewski W., Riedel F. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007;252:440–457. doi: 10.1016/j.palaeo.2007.05.002. DOI
Lindgren A., Hugelius G., Kuhry P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature. 2018;560:219–222. doi: 10.1038/s41586-018-0371-0. PubMed DOI
Bezrukova E.V., Tarasov P.E., Solovieva N., Krivonogov S.K., Riedel F. Last glacial-interglacial vegetation and environmental dynamics in southern Siberia: Chronology, forcing and feedbacks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010;296:185–198. doi: 10.1016/j.palaeo.2010.07.020. DOI
Tarasov P.E., Andreev A.A., Anderson P.M., Lozhkin A.V., Leipe C., Haltia E., Nowaczyk N.R., Wennrich V., Brigham-Grette J., Melles M. A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic - new insights into climate-vegetation relationships at the regional scale. Clim. Past. 2013;9:2759–2775. doi: 10.5194/cp-9-2759-2013. DOI
Velichko A.A., Catto N., Drenova A.N., Klimanov V.A., Kremenetski K.V., Nechaev V.P. Climate changes in East Europe and Siberia at the Late glacial-holocene transition. Quat. Int. 2002;91:75–99. doi: 10.1016/S1040-6182(01)00104-5. DOI
Velichko A.A., Kononov Y.M., Faustova M.A. The last glaciation of eartsize and volume of ice-sheets. Quat. Int. 1997;42:43–51. doi: 10.1016/S1040-6182(96)00035-3. DOI
Korbut Z., Agata B., Banaszek A., Agata B. The history of species reacting with range shifts to the Oceanic-Continental climate gradient in Europe. The case of the common hamster (Cricetus Cricetus) Kosmos. 2016;65:69–79.
Karpińska-Kołaczek M., Kołaczek P., Stachowicz-Rybka R. Pathways of woodland succession under low human impact during the last 13,000 years in northeastern Poland. Quat. Int. 2014;328–329:196–212. doi: 10.1016/j.quaint.2013.11.038. DOI
Kołaczek P. Late Glacial and Holocene vegetation changes in the western part of Rzeszów foothills (Sandomierz basin) based on the pollen diagram from Krasne near Rzeszów. Acta Palaeobot. 2007;47:455–467.
Brewer S., Giesecke T., Davis B.A.S., Finsinger W., Wolters S., Binney H., de Beaulieu J.-L., Fyfe R., Gil-Romera G., Kühl N., et al. Late-glacial and Holocene European pollen data. J. Maps. 2017;13:921–928. doi: 10.1080/17445647.2016.1197613. DOI
Giesecke T., Brewer S., Finsinger W., Leydet M., Bradshaw R.H.W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 2017;44:1441–1456. doi: 10.1111/jbi.12974. DOI
Cheddadi R., Bar-Hen A. Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim. Dyn. 2009;32:371–379. doi: 10.1007/s00382-008-0405-7. DOI
Valsecchi V., Sanchez Goñi M.F., Londeix L. Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: Insights from a new pollen record from the Sea of Marmara. Clim. Past. 2012;8:1941–1956. doi: 10.5194/cp-8-1941-2012. DOI
Holišová V. The food of Apodemus agrarius (Pall.) Folia Zool. 1967;16:1–14.
Krajcarz M.T., Krajcarz M., Goslar T., Nadachowski A. The first radiocarbon dated steppe polecat (Mustela eversmanii) from the Pleistocene of Poland. Quat. Int. 2015;357:237–244. doi: 10.1016/j.quaint.2014.06.001. DOI
Říčanová Š., Bryja J., Cosson J.F., Gedeon C., Choleva L., Ambros M., Sedláček F. Depleted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: Implications for conservation. Conserv. Genet. 2011;12:1115–1129. doi: 10.1007/s10592-011-0213-1. DOI
Neumann K., Michaux J.R., Maak S., Jansman H.A.H., Kayser A., Mundt G., Gattermann R. Genetic spatial structure of European common hamsters (Cricetus cricetus)--a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 2005;14:1473–1483. doi: 10.1111/j.1365-294X.2005.02519.x. PubMed DOI
Rofes J., García-Ibaibarriaga N., Murelaga X., Arrizabalaga Á., Iriarte M.J., Cuenca-Bescós G., Villaluenga A. The southwesternmost record of Sicista (Mammalia; Dipodidae) in Eurasia, with a review of the palaeogeography and palaeoecology of the genus in Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012;348–349:67–73. doi: 10.1016/j.palaeo.2012.06.016. DOI
Campos P.F., Kristensen T., Orlando L., Sher A., Kholodova M.V., Götherström A., Hofreiter M., Drucker D.G., Kosintsev P., Tikhonov A., et al. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 2010;19:4863–4875. doi: 10.1111/j.1365-294X.2010.04826.x. PubMed DOI