Discovery of cryptic plant diversity on the rooftops of the Alps

. 2021 May 27 ; 11 (1) : 11128. [epub] 20210527

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34045566
Odkazy

PubMed 34045566
PubMed Central PMC8159976
DOI 10.1038/s41598-021-90612-w
PII: 10.1038/s41598-021-90612-w
Knihovny.cz E-zdroje

High elevation temperate mountains have long been considered species poor owing to high extinction or low speciation rates during the Pleistocene. We performed a phylogenetic and population genomic investigation of an emblematic high-elevation plant clade (Androsace sect. Aretia, 31 currently recognized species), based on plant surveys conducted during alpinism expeditions. We inferred that this clade originated in the Miocene and continued diversifying through Pleistocene glaciations, and discovered three novel species of Androsace dwelling on different bedrock types on the rooftops of the Alps. This highlights that temperate high mountains have been cradles of plant diversity even during the Pleistocene, with in-situ speciation driven by the combined action of geography and geology. Our findings have an unexpected historical relevance: H.-B. de Saussure likely observed one of these species during his 1788 expedition to the Mont Blanc and we describe it here, over two hundred years after its first sighting.

Zobrazit více v PubMed

Ozenda PL. Végétation de la chaîne alpine dans l’espace montagnard Européen. Bull. Mens. Soc. Linn. Lyon. 1985;54:66–67.

Engler R, et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 2011;17:2330–2341. doi: 10.1111/j.1365-2486.2010.02393.x. DOI

Spehn, E. M. & Körner, C. A global assessment of mountain biodiversity and its function. In Global Change and Mountain Regions, 393–400 (2005).

Rahbek C, et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science (80-.) 2019;365:1108–1113. doi: 10.1126/science.aax0149. PubMed DOI

Aeschimann D, Rasolofo N, Theurillat J. Analyse de la flore des Alpes. 3: biologie et phénologie. Candollea. 2012;67:3–22.

McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (2010).

Boucher FC, Zimmermann NE, Conti E. Allopatric speciation with little niche divergence is common among alpine Primulaceae. J. Biogeogr. 2016;43:591–602. doi: 10.1111/jbi.12652. DOI

Kadereit JW, Griebeler EM, Comes HP. Quaternary diversification in European alpine plants: pattern and process. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:265–274. doi: 10.1098/rstb.2003.1389. PubMed DOI PMC

Körner C. Alpine Plant Life. Springer; 1999.

Smyčka J, et al. Disentangling drivers of plant endemism and diversification in the European Alps—a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 2017;28:19–27. doi: 10.1016/j.ppees.2017.06.004. DOI

Conti E, Soltis DE, Hardig TM, Schneider J. Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol. Phylogenet. Evol. 1999;13:536–555. doi: 10.1006/mpev.1999.0673. PubMed DOI

Moore AJ, Kadereit JW. The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: In situ origin or repeated colonization? Am. J. Bot. 2013;100:2412–2425. doi: 10.3732/ajb.1300225. PubMed DOI

Grundt HH, Kjølner S, Borgen L, Rieseberg LH, Brochmann C. High biological species diversity in the arctic flora. Proc. Natl. Acad. Sci. U.S.A. 2006;103:972–975. doi: 10.1073/pnas.0510270103. PubMed DOI PMC

Kadereit JW. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps—a review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect. Plant Ecol. Evol. Syst. 2017;26:28–38. doi: 10.1016/j.ppees.2017.03.002. DOI

Marx HE, et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 2017;44:2618–2630. doi: 10.1111/jbi.13073. PubMed DOI PMC

Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 2004;101:14812–14817. doi: 10.1073/pnas.0406166101. PubMed DOI PMC

Vieites DR, et al. Vast underestimation of Madagascar;s biodiversity evidenced by an integrative amphibian inventory. Proc. Natl. Acad. Sci. 2009;106:8267–8272. doi: 10.1073/pnas.0810821106. PubMed DOI PMC

Bálint M, et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change. 2011;1:313–318. doi: 10.1038/nclimate1191. DOI

Gill BA, et al. Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis. Proc. R. Soc. B Biol. Sci. 2016;283:20160553. doi: 10.1098/rspb.2016.0553. PubMed DOI PMC

Moritz C, et al. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. B Biol. Sci. 2009;276:1235–1244. doi: 10.1098/rspb.2008.1622. PubMed DOI PMC

Struck TH, et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 2018;33:153–163. doi: 10.1016/j.tree.2017.11.007. PubMed DOI

Körner C. Coldest places on earth with angiosperm plant life. Alp. Bot. 2011;121:11–22. doi: 10.1007/s00035-011-0089-1. DOI

Dentant C. The highest vascular plants on Earth. Alp. Bot. 2018 doi: 10.1007/s00035-018-0208-3. DOI

Schneeweiss G, Schönswetter P, Kelso S, Niklfeld H. Complex biogeographic patterns in Androsace (Primulaceae) and related genera: evidence from phylogenetic analyses of nuclear internal transcribed spacer and plastid trnL-F sequences. Syst. Biol. 2004;53:856–876. doi: 10.1080/10635150490522566. PubMed DOI

Boucher FC, et al. Reconstructing the origins of high-alpine niches and cushion life form in the genus Androsace s.l. (Primulaceae) Evolution (N. Y.) 2012;66:1255–1268. PubMed PMC

Aubert S, Boucher F, Lavergne S, Renaud J, Choler P. 1914–2014: A revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp. Bot. 2014;124:59–70. doi: 10.1007/s00035-014-0127-x. DOI

Roquet C, Boucher FC, Thuiller W, Lavergne S. Replicated radiations of the alpine genus Androsace (Primulaceae ) driven by range expansion and convergent key innovations. J. Biogeogr. 2013;40:1874–1886. doi: 10.1111/jbi.12135. PubMed DOI PMC

Jordan DL. flore Rare ou Menacée de Haute-Savoie. Naturalia Publications; 2015.

Dentant C, Lavergne S, Malécot V. Taxonomic revision of West-Alpine cushion plant species belonging to Androsace subsect. Aretia. Bot. Lett. 2018;165:337–351. doi: 10.1080/23818107.2018.1450784. DOI

von Haller, A. Enumeratio methodica stirpium Helvetiae indigenarum (1742).

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC

Nowak MD, et al. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol. 2015;16:12. doi: 10.1186/s13059-014-0567-z. PubMed DOI PMC

Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and Efficient Estimation of Individual Ancestry Coefficients. Genetics. 2014;196:973–983. doi: 10.1534/genetics.113.160572. PubMed DOI PMC

De Queiroz K. Species concepts and species delimitation. Syst. Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI

Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 2012;27:480–488. doi: 10.1016/j.tree.2012.04.012. PubMed DOI

Leaché AD, Fujita MK, Minin VN, Bouckaert RR. Species delimitation using genome-wide SNP data. Syst. Biol. 2014;63:534–542. doi: 10.1093/sysbio/syu018. PubMed DOI PMC

Cornuet J-M, et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–1189. doi: 10.1093/bioinformatics/btt763. PubMed DOI

Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 2012;29:1917–1932. doi: 10.1093/molbev/mss086. PubMed DOI PMC

de Saussure, H.-B. Voyage dans les Alpes—tomes I, II, III et IV. (Samuel Fauche (tome I) ; Barde, Manget & Compagnie (tome II) ; Louis Fauche-Borel (tomes III&IV), 1780).

Jacquemoud F, Jordan D. Androsace albimontana (Primulaceae): une nouvelle espèce des Alpes (France, Suisse, Italie) à distinguer de A. pubescens. Candollea. 2020;75:149. doi: 10.15553/c2020v751a14. DOI

Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. U.S.A. 2006;103:10334–10339. doi: 10.1073/pnas.0601928103. PubMed DOI PMC

Glor RE. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 2010;41:251–270. doi: 10.1146/annurev.ecolsys.39.110707.173447. DOI

Van Bocxlaer B, Hunt G. Morphological stasis in an ongoing gastropod radiation from Lake Malawi. Proc. Natl. Acad. Sci. 2013;110:13892–13897. doi: 10.1073/pnas.1308588110. PubMed DOI PMC

Czekanski-Moir JE, Rundell RJ. The ecology of nonecological speciation and nonadaptive radiations. Trends Ecol. Evol. 2019;34:400–415. doi: 10.1016/j.tree.2019.01.012. PubMed DOI

Cutter AD, Gray JC. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution (N. Y.) 2016;70:2171–2185. PubMed

Boucher FC, Lavergne S, Basile M, Choler P, Aubert S. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Syst. 2016;20:22–31. doi: 10.1016/j.ppees.2016.03.002. DOI

Valla PG, Shuster DL, Van Der Beek PA. Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nat. Geosci. 2011;4:688–692. doi: 10.1038/ngeo1242. DOI

Herman F, et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature. 2013;504:423–426. doi: 10.1038/nature12877. PubMed DOI

Schneeweiss GM, Schönswetter P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 2011;20:190–192. doi: 10.1111/j.1365-294X.2010.04927.x. PubMed DOI

Schneeweiss GM, Winkler M, Schönswetter P. Secondary contact after divergence in allopatry explains current lack of ecogeographical isolation in two hybridizing alpine plant species. J. Biogeogr. 2017;44:2575–2584. doi: 10.1111/jbi.13071. DOI

Hughes CE, Atchison GW. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 2015;207:275–282. doi: 10.1111/nph.13230. PubMed DOI

Dayrat B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005;85:407–415. doi: 10.1111/j.1095-8312.2005.00503.x. DOI

Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol. Ecol. 2013;22:4369–4383. doi: 10.1111/mec.12413. PubMed DOI

Ozenda P. L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot. Gall. 1995;142:753–762. doi: 10.1080/12538078.1995.10515302. DOI

Alvarez N, et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol. Lett. 2009;12:632–640. doi: 10.1111/j.1461-0248.2009.01312.x. PubMed DOI

Glotzbach C, Beek P, Spiegel C. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth Planet. Sci. Lett. 2011;304:417–430. doi: 10.1016/j.epsl.2011.02.020. DOI

Nosil P. Ecological Speciation. Oxford University Press; 2012.

Steinbauer MJ, et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature. 2018;556:231–234. doi: 10.1038/s41586-018-0005-6. PubMed DOI

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent model. Bioinformatics. 2014;30:3317–3324. doi: 10.1093/bioinformatics/btu530. PubMed DOI PMC

Sanderson MJ. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 2002;19:101–109. doi: 10.1093/oxfordjournals.molbev.a003974. PubMed DOI

Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster (2012).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...