Investigation of biofilm formation in methicillin-resistant Staphylococcus aureus associated with bacteraemia in a tertiary hospital
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FP016-2014B
Ministry of Higher Education Fundamental Research Grant Scheme (FRGS)</
IF004-2020
International Research Funding
PubMed
34089493
DOI
10.1007/s12223-021-00877-x
PII: 10.1007/s12223-021-00877-x
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilm former, Genotype, MRSA, Persistent bacteraemia, Phenotype,
- MeSH
- bakteriemie * mikrobiologie MeSH
- biofilmy * MeSH
- centra terciární péče MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * fyziologie MeSH
- stafylokokové infekce * mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Biofilm formation is an important physiological process in Staphylococcus aureus (S. aureus) that can cause infections in humans. In this study, the ability of 36 methicillin-resistant S. aureus (MRSA) clinical isolates to form biofilm was studied based on genotypic and phenotypic approaches. These isolates were genotyped based on the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and biofilm-associated genes (icaAD) via polymerase chain reactions. Phenotyping was performed based on the determination of the strength of biofilm formation of MRSA isolates in vitro. The most prevalent MSCRAMMs and biofilm-associated genes were clfA, eno, and icaD, followed by clfB. The fnbB (38.9%) and ebpS (11.1%) occurred less frequently among the MRSA isolates, while bbp and fnbA genes were absent from all isolates. The MRSA isolates were mostly moderate to strong biofilm formers, despite the heterogeneity of the MSCRAMM profiles. MRSA isolates from different infection sources (primary, catheter-related bloodstream, or secondary infections) were capable of forming strong biofilms. However, persistent bacteraemia was observed only in 19.4% of the MRSA-infected individuals. This study suggested that persistent MRSA bacteraemia in patients might not be associated with the biofilm-forming ability of the isolates.
Department of Medical Microbiology Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
Department of Medicine Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
Nanotechnology and Catalysis Research Centre Universiti Malaya 50603 Kuala Lumpur Malaysia
Zobrazit více v PubMed
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus Aureus Biofilms Virulence 2:445–459 PubMed
Arciola CR, Baldassarri L, Montanaro L (2001) Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 39:2151–2156 DOI
Arvidson S, Tegmark K (2001) Regulation of virulence determinants in Staphylococcus aureus. Int J Med Microbiol 291:159–170 DOI
Boles BR, Horswill AR (2008) agr-Mediated dispersal of Staphylococcus aureus biofilms. PLOS Pathog 4:e1000052 DOI
Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P (2020a) Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem 16:65–80 DOI
Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P (2020b) Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J Med Chem 63:7923–7956 DOI
Cha J-O, Yoo JI, Yoo JS, Chung H-S, Park S-H, Kim HS et al (2013) Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus. Osong Public Health Res Perspect 4:225–232 DOI
Choe D, Szubin R, Dahesh S, Cho S, Nizet V, Palsson B et al (2018) Genome-scale analysis of methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance. UK-Sci Rep 8:2215 DOI
Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28:1062–1068 DOI
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science (new York, NY) 284:1318–1322 DOI
Croes S, Deurenberg RH, Boumans M-LL, Beisser PS, Neef C, Stobberingh EE (2009) Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol 9:229.
Cue D, Lei M, Lee C (2012) Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol 2:38 DOI
Eseonu KC, Middleton SD, Eseonu CC (2011) A retrospective study of risk factors for poor outcomes in methicillin-resistant Staphylococcus aureus (MRSA) infection in surgical patients. J Orthop Surg Res 6:25 DOI
Fluit AC (2012) Livestock-associated Staphylococcus aureus. Clin Microbiol Infect 18:735–744 DOI
Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62 DOI
Francois P, Schrenzel J, Stoerman-Chopard C, Favre H, Herrmann M, Foster TJ et al (2000) Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. J Lab Clin Med 135:32–42 DOI
Jones SM, Morgan M, Humphrey TJ, Lappin-Scott H (2001) Effect of vancomycin and rifampicin on methicillin-resistant Staphylococcus aureus biofilms. Lancet 357:40–41 DOI
Kawamura H, Nishi J, Imuta N, Tokuda K, Miyanohara H, Hashiguchi T et al (2011) Quantitative analysis of biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) strains from patients with orthopaedic device-related infections. FEMS Immunol Med Microbiol 63:10–15 DOI
Kiedrowski MR, Horswill AR (2011) New approaches for treating staphylococcal biofilm infections. Ann NY Acad Sci 1241:104–121 DOI
Kwiecinski JM, Jacobsson G, Horswill AR, Josefsson E, Jin T (2019) Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infect Dis 51:446–451 DOI
Kwon AS, Park GC, Ryu SY, Lim DH, Lim DY, Choi CH et al (2008) Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int J Antimicrob Ag 32:68–72 DOI
Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543 DOI
Lewis K (2010) Persister Cells Ann Rev Microbiol 64:357–372 DOI
McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP (2015) Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 5:1 DOI
McCourt J, O’Halloran DP, McCarthy H, O’Gara JP, Geoghegan JA (2014) Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353:157–164 DOI
Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P et al (2011) Extracellular DNA in biofilms. Int J Artif Organs 34:824–831 DOI
Niek WK, Teh CSJ, Idris N, Thong KL, Ponnampalavanar S (2019) Predominance of ST22-MRSA-IV clone and emergence of clones for methicillin-resistant Staphylococcus aureus clinical isolates collected from a tertiary teaching hospital over a two-year period. Jpn J Infect Dis 72:228–236 DOI
O’Gara JP (2007) ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188 DOI
Ok HS, Lee HS, Park MJ, Kim KH, Kim BK, Wi YM et al (2013) Predictors and clinical outcomes of persistent methicillin-resistant Staphylococcus aureus bacteremia: a prospective observational study. Korean J Intern Med 28:678–686 DOI
O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A et al (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850 DOI
O’Toole GA (2011) Microtiter dish biofilm formation assay. J vis Exp 2011:2437
Parrino B, Carbone D, Cirrincione G, Diana P, Cascioferro S (2020) Inhibitors of antibiotic resistance mechanisms: clinical applications and future perspectives. Future Med Chem 12:357–359 DOI
Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, Cascioferro S (2019) Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 161:154–178 DOI
Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899 DOI
Szabó J (2009) hVISA/VISA: Diagnostic and therapeutic problems. Expert Rev Anti-Infe 7:1–3 DOI
Szczuka E, Urbańska K, Pietryka M, Kaznowski A (2013) Biofilm density and detection of biofilm-producing genes in methicillin-resistant Staphylococcus aureus strains. Folia Microbiol 58:47–52 DOI
Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G (2003) Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol 41:4465–4467 DOI
Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS (2003) Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 92:179–185 DOI
Yahav D, Yassin S, Shaked H, Goldberg E, Bishara J, Paul M et al (2016) Risk factors for long-term mortality of Staphylococcus aureus bacteremia. Eur J Clin Microbiol 35:785–790 DOI