• This record comes from PubMed

Detecting Förster resonance energy transfer in living cells by conventional and spectral flow cytometry

. 2022 Oct ; 101 (10) : 818-834. [epub] 20210624

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural

Grant support
CA16672 MD Anderson Cancer Center
S10 RR029552 NCRR NIH HHS - United States

Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.

See more in PubMed

Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool-understanding its potential while avoiding pitfalls. Nat Methods. 2019;16:815-29.

Lee HN, Mehta S, Zhang J. Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Curr Opin Cell Biol. 2020;63:114-24.

Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J. A guide to fluorescent protein FRET pairs. Sensors. 2016;16:1488-511.

Zal T, Gascoigne NR. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J. 2004;86:3923-39.

Chen H, Puhl HL 3rd, Koushik SV, Vogel SS, Ikeda SR. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J. 2006;91:L39-41.

Nagy P, Bene L, Hyun WC, Vereb G, Braun M, Antz C, et al. Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry A. 2005;67:86-96.

Coullomb A, Bidan CM, Qian C, Wehnekamp F, Oddou C, Albiges-Rizo C, et al. QuanTI-FRET: a framework for quantitative FRET measurements in living cells. Sci Rep. 2020;10:6504.

Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep. 2019;9:8233.

Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C, West S, et al. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A. 2018;93:1029-38.

Levy S, Wilms CD, Brumer E, Kahn J, Pnueli L, Arava Y, et al. SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency. Microsc Microanal. 2011;17:176-90.

Lin F, Zhang C, Du M, Wang L, Mai Z, Chen T. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement. J Microsc. 2018;272:145-50.

Megias D, Marrero R, Martinez Del Peso B, Garcia MA, Bravo-Cordero JJ, Garcia-Grande A, et al. Novel lambda FRET spectral confocal microscopy imaging method. Microsc Res Tech. 2009;72:1-11.

Ferrer-Font L, Pellefigues C, Mayer JU, Small SJ, Jaimes MC, Price KM. Panel design and optimization for high-dimensional Immunophenotyping assays using spectral flow cytometry. Curr Protoc Cytom. 2020;92:e70.

Robinson JP. Spectral flow cytometry-quo vadimus? Cytometry A. 2019;95:823-4.

Hochreiter B, Garcia AP, Schmid JA. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors. 2015;15:26281-314.

Maryu G, Miura H, Uda Y, Komatsubara AT, Matsuda M, Aoki K. Live-cell imaging with genetically encoded protein kinase activity reporters. Cell Struct Funct. 2018;43:61-74.

Ni Q, Mehta S, Zhang J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 2018;285:203-19.

Havranek O, Xu J, Köhrer S, Wang Z, Becker L, Comer JM, et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 2017;130:995-1006.

Zal T, Zal MA, Gascoigne NR. Inhibition of T cell receptor-coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity. 2002;16:521-34.

He L, Wu X, Simone J, Hewgill D, Lipsky PE. Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP->YFP->mRFP FRET detected by flow cytometry. Nucleic Acids Res. 2005;33:e61.

Niewold P, Ashhurst TM, Smith AL, King NJC. Evaluating spectral cytometry for immune profiling in viral disease. Cytometry A. 2020;97:1165-79.

Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381-405.

Gao X, Zhang J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell. 2008;19:4366-73.

Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J. Dynamic visualization of mTORC1 activity in living cells. Cell reports. 2015;10:1767-77.

Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 2014;508:541-5.

Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY. Insulin disrupts beta-adrenergic signalling to protein kinase a in adipocytes. Nature. 2005;437:569-73.

Ebner M, Lucic I, Leonard TA, Yudushkin I. PI(3,4,5)P3 engagement restricts Akt activity to cellular membranes. Mol Cell. 2017;65:416-31. e6.

Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, et al. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell. 2011;22:4647-56.

Kowarz E, Loscher D, Marschalek R. Optimized sleeping beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J. 2015;10:647-53.

Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore JC, Villefranc JA, et al. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Dev Biol. 2009;329:212-26.

Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956-67.

Jo H, Lo PK, Li Y, Loison F, Green S, Wang J, et al. Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination. Proc Natl Acad Sci U S A. 2011;108:6486-91.

Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, et al. A first-in-human phase I study of the ATP-competitive AKT inhibitor Ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 2017;7:102-13.

Ghobrial IM, Siegel DS, Vij R, Berdeja JG, Richardson PG, Neuwirth R, et al. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: a phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenstrom's macroglobulinemia. Am J Hematol. 2016;91:400-5.

Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485:55-61.

Davis RE, Ngo VN, Lenz G, Tolar P, Young R, Romesser PB, et al. Chronic active B cell receptor signaling in diffuse large B cell lymphoma. Nature. 2010;463:88-92.

Durocher D, Henckel J, Fersht AR, Jackson SP. The FHA domain is a modular phosphopeptide recognition motif. Mol Cell. 1999;4:387-94.

England JP, Hao Y, Bai L, Glick V, Hodges HC, Taylor SS, et al. Switching of the folding-energy landscape governs the allosteric activation of protein kinase a. Proc Natl Acad Sci U S A. 2018;115:E7478-85.

Fertig BA, Baillie GS. PDE4-mediated cAMP Signalling. J Cardiovasc Dev Dis. 2018;5:8-21.

Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood. 2005;105:308-16.

Saldou N, Obernolte R, Huber A, Baecker PA, Wilhelm R, Alvarez R, et al. Comparison of recombinant human PDE4 isoforms: interaction with substrate and inhibitors. Cell Signal. 1998;10:427-40.

Hatzelmann A, Morcillo EJ, Lungarella G, Adnot S, Sanjar S, Beume R, et al. The preclinical pharmacology of roflumilast-a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2010;23:235-56.

Arumugham VB, Baldari CT. cAMP: a multifaceted modulator of immune synapse assembly and T cell activation. J Leukoc Biol. 2017;101:1301-16.

Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated Immunoregulation in T cells-role of anchored protein kinase a signaling units. Front Immunol. 2016;7:222.

Cooney JD, Aguiar RC. Phosphodiesterase 4 inhibitors have wide-ranging activity in B-cell malignancies. Blood. 2016;128:2886-90.

Kim SW, Rai D, McKeller MR, Aguiar RC. Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood. 2009;113:6153-60.

Cooney JD, Lin AP, Jiang D, Wang L, Suhasini AN, Myers J, et al. Synergistic targeting of the regulatory and catalytic subunits of PI3Kdelta in mature B-cell malignancies. Clin Cancer Res. 2018;24:1103-13.

Yu S, Huang H, Iliuk A, Wang WH, Jayasundera KB, Tao WA, et al. Syk inhibits the activity of protein kinase a by phosphorylating tyrosine 330 of the catalytic subunit. J Biol Chem. 2013;288:10870-81.

Caldwell GB, Howe AK, Nickl CK, Dostmann WR, Ballif BA, Deming PB. Direct modulation of the protein kinase a catalytic subunit alpha by growth factor receptor tyrosine kinases. J Cell Biochem. 2012;113:39-48.

Feher K, von Volkmann K, Kirsch J, Radbruch A, Popien J, Kaiser T. Multispectral flow cytometry: the consequences of increased light collection. Cytometry A. 2016;89:681-9.

Gregori G, Patsekin V, Rajwa B, Jones J, Ragheb K, Holdman C, et al. Hyperspectral cytometry at the single-cell level using a 32-channel photodetector. Cytometry A. 2012;81:35-44.

Kjeldsen MK, Perez-Andres M, Schmitz A, Johansen P, Boegsted M, Nyegaard M, et al. Multiparametric flow cytometry for identification and fluorescence activated cell sorting of five distinct B-cell subpopulations in normal tonsil tissue. Am J Clin Pathol. 2011;136:960-9.

von Kolontaj K, Horvath GL, Latz E, Buscher M. Automated nanoscale flow cytometry for assessing protein-protein interactions. Cytometry A. 2016;89:835-43.

Lee WY, Tolar P. Activation of the B cell receptor leads to increased membrane proximity of the Igalpha cytoplasmic domain. PLoS One. 2013;8:e79148.

Temmerman K, Nickel W. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. J Lipid Res. 2009;50:1245-54.

Caron NS, Munsie LN, Keillor JW, Truant R. Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells. PLoS One. 2012;7:e44159.

Sanabria H, Rodnin D, Hemmen K, Peulen TO, Felekyan S, Fleissner MR, et al. Resolving dynamics and function of transient states in single enzyme molecules. Nat Commun. 2020;11:1231.

Bozza WP, Di X, Takeda K, Rivera Rosado LA, Pariser S, Zhang B. The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. PLoS One. 2014;9:e107010.

Doucette J, Zhao Z, Geyer RJ, Barra MM, Balunas MJ, Zweifach A. Flow cytometry enables multiplexed measurements of genetically encoded intramolecular FRET sensors suitable for screening. J Biomol Screen. 2016;21:535-47.

Alturkistany F, Nichani K, Houston KD, Houston JP. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry. Cytometry A. 2019;95:70-9.

Houston JP, Yang Z, Sambrano J, Li W, Nichani K, Vacca G. Overview of fluorescence lifetime measurements in flow cytometry. Methods Mol Biol. 2018;1678:421-46.

Szaloki N, Doan-Xuan QM, Szollosi J, Toth K, Vamosi G, Bacso Z. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry. Cytometry A. 2013;83:818-29.

Szentesi G, Horvath G, Bori I, Vamosi G, Szollosi J, Gaspar R, et al. Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed. 2004;75:201-11.

Kawai Y, Sato M, Umezawa Y. Single color fluorescent indicators of protein phosphorylation for multicolor imaging of intracellular signal flow dynamics. Anal Chem. 2004;76:6144-9.

Liu W, Deng M, Yang C, Liu F, Guan X, Du Y, et al. Genetically encoded single circularly permuted fluorescent protein-based intensity indicators. J Phys D Appl Phys. 2020;53:113001.

Mehta S, Zhang Y, Roth RH, Zhang JF, Mo A, Tenner B, et al. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat Cell Biol. 2018;20:1215-25.

Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, et al. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer. 2011;104:1755-61.

Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R, et al. Inhibitor hijacking of Akt activation. Nat Chem Biol. 2009;5:484-93.

Murn J, Alibert O, Wu N, Tendil S, Gidrol X. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J Exp Med. 2008;205:3091-103.

Fedyk ER, Phipps RP. Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proc Natl Acad Sci U S A. 1996;93:10978-83.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...