Computational study of novel inhibitory molecule, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea, with high potential to competitively block ATP binding to the RNA dependent RNA polymerase of SARS-CoV-2 virus
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R21 OD024896
NIH HHS - United States
- Klíčová slova
- Piperazine3-Amino-4-phenylbutan-2-ol, RNA-dependent RNA polymerase (RdRp), SARS-CoV-2, in silico screening,
- MeSH
- adenosintrifosfát MeSH
- antivirové látky * farmakologie MeSH
- RNA-dependentní RNA-polymerasa * antagonisté a inhibitory MeSH
- SARS-CoV-2 * účinky léků MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- antivirové látky * MeSH
- RNA-dependentní RNA-polymerasa * MeSH
For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.
Department of Biology College of Arts and Sciences Georgia State University Atlanta GA USA
Department of Chemistry Miranda House University of Delhi Delhi India
Infection Biology Group Indian Foundation for Fundamental Research Rae Bareli India
Translational Health Science and Technology Institute Haryana India
Citace poskytuje Crossref.org