Variability and Randomness of the Instantaneous Firing Rate
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34163344
PubMed Central
PMC8215133
DOI
10.3389/fncom.2021.620410
Knihovny.cz E-resources
- Keywords
- entropy, firing rate, instantaneous firing rate, neural coding, randomness, rate coding, temporal coding, variability,
- Publication type
- Journal Article MeSH
The apparent stochastic nature of neuronal activity significantly affects the reliability of neuronal coding. To quantify the encountered fluctuations, both in neural data and simulations, the notions of variability and randomness of inter-spike intervals have been proposed and studied. In this article we focus on the concept of the instantaneous firing rate, which is also based on the spike timing. We use several classical statistical models of neuronal activity and we study the corresponding probability distributions of the instantaneous firing rate. To characterize the firing rate variability and randomness under different spiking regimes, we use different indices of statistical dispersion. We find that the relationship between the variability of interspike intervals and the instantaneous firing rate is not straightforward in general. Counter-intuitively, an increase in the randomness (based on entropy) of spike times may either decrease or increase the randomness of instantaneous firing rate, in dependence on the neuronal firing model. Finally, we apply our methods to experimental data, establishing that instantaneous rate analysis can indeed provide additional information about the spiking activity.
See more in PubMed
Abramowitz M., Stegun I. (1972). Handbook of Mathematical Functions. New York, NY: American Association of Physics Teachers.
Adrian E. D. (1926). The impulses produced by sensory nerve-ending. J. Physiol. 62, 33–51. 10.1113/jphysiol.1926.sp002334 PubMed DOI PMC
Ainsworth M., Lee S., Cunningham M. O., Traub R. D., Kopell N. J., Whittington M. A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75, 572–583. 10.1016/j.neuron.2012.08.004 PubMed DOI
Awiszus F. (1988). Continuous functions determined by spike trains of a neuron subject to stimulation. Biol. Cybern. 58, 321–327. 10.1007/BF00363941 PubMed DOI
Barbieri F., Brunel N. (2007). Irregular persistent activity induced by synaptic excitatory feedback. Front. Comput. Neurosci. 1:5. 10.3389/neuro.10.005.2007 PubMed DOI PMC
Berger D., Pribram K., Wild H., Bridges C. (1990). An analysis of neural spike-train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency. Exp. Brain Res. 80, 129–134. 10.1007/BF00228854 PubMed DOI
Bershadskii A., Dremencov E., Fukayama D., Yadid G. (2001). Probabilistic properties of neuron spiking time-series obtained in vivo. Eur. Phys. J. B Condens. Matter Complex Syst. 24, 409–413. 10.1007/s10051-001-8691-4 DOI
Bessou P., Laporte Y., Pages B. (1968). A method of analysing the responses of spindle primary endings to fusimotor stimulation. J. Physiol. 196:37. 10.1113/jphysiol.1968.sp008492 PubMed DOI PMC
Bhumbra G., Dyball R. (2004). Measuring spike coding in the rat supraoptic nucleus. J. Physiol. 555, 281–296. 10.1113/jphysiol.2003.053264 PubMed DOI PMC
Buraças G. T., Albright T. D. (1999). Gauging sensory representations in the brain. Trends Neurosci. 22, 303–309. 10.1016/S0166-2236(98)01376-9 PubMed DOI
Casella G., Berger R. L. (2002). Statistical Inference. Grove, CA: Duxbury Pacific.
Cover T. M., Thomas J. A. (2012). Elements of Information Theory. New York, NY: John Wiley & Sons.
Cox D., Miller H. (1965). The Theory of Stochastic Processes. New York, NY: John Wiley & Sons.
Cox D. R., Lewis P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen & Co Ltd. 10.1007/978-94-011-7801-3 DOI
Dettner A., Münzberg S., Tchumatchenko T. (2016). Temporal pairwise spike correlations fully capture single-neuron information. Nat. Commun. 7:13805. 10.1038/ncomms13805 PubMed DOI PMC
Ditlevsen S., Lansky P. (2011). Firing variability is higher than deduced from the empirical coefficient of variation. Neural Comput. 23, 1944–1966. 10.1162/NECO_a_00157 PubMed DOI
Doron G., Von Heimendahl M., Schlattmann P., Houweling A. R., Brecht M. (2014). Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81, 653–663. 10.1016/j.neuron.2013.11.032 PubMed DOI
Dorval A. D., Russo G. S., Hashimoto T., Xu W., Grill W. M., Vitek J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson's disease. J. Neurophysiol. 100, 2807–2818. 10.1152/jn.90763.2008 PubMed DOI PMC
Eden U. T., Kass R. E. (2016). Chapter 107: Statistical models of spike train data, in Neuroscience in the 21st Century, eds Pfaff D. W., Volkow N. (New York, NY: Springer; ), 3137–3151. 10.1007/978-1-4939-3474-4_167 DOI
Gerstein G. L., Mandelbrot B. (1964). Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68. 10.1016/S0006-3495(64)86768-0 PubMed DOI PMC
Gerstner W., Kistler W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press. 10.1017/CBO9780511815706 DOI
Heil P., Neubauer H., Irvine D., Brown M. (2007). Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. J. Neurosci. 27, 8457–8474. 10.1523/JNEUROSCI.1512-07.2007 PubMed DOI PMC
Jacobs A. L., Fridman G., Douglas R. M., Alam N. M., Latham P. E., Prusky G. T., et al. . (2009). Ruling out and ruling in neural codes. Proc. Natl. Acad. Sci. U.S.A. 106, 5936–5941. 10.1073/pnas.0900573106 PubMed DOI PMC
Kostal L., Lansky P. (2006). Classification of stationary neuronal activity according to its information rate. Network 17, 193–210. 10.1080/09548980600594165 PubMed DOI
Kostal L., Lansky P., Pokora O. (2013). Measures of statistical dispersion based on shannon and fisher information concepts. Info. Sci. 235, 214–223. 10.1016/j.ins.2013.02.023 DOI
Kostal L., Lansky P., Rospars J. P. (2007a). Neuronal coding and spiking randomness. Eur. J. Neurosci. 26, 2693–2701. 10.1111/j.1460-9568.2007.05880.x PubMed DOI
Kostal L., Lansky P., Stiber M. (2018). Statistics of inverse interspike intervals: the instantaneous firing rate revisited. Chaos 28:106305. 10.1063/1.5036831 PubMed DOI
Kostal L., Lansky P., Zucca C. (2007b). Randomness and variability of the neuronal activity described by the ornstein-uhlenbeck model. Network 18, 63–75. 10.1080/09548980701243134 PubMed DOI
Kostal L., Marsalek P. (2010). Neuronal jitter: can we measure the spike timing dispersion differently. Chin. J. Physiol. 53, 454–464. 10.4077/CJP.2010.AMM031 PubMed DOI
Lansky P., Rodriguez R., Sacerdote L. (2004). Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput. 16, 477–489. 10.1162/089976604772744875 PubMed DOI
Levine M. W. (1991). The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol. Cybern. 65, 459–467. 10.1007/BF00204659 PubMed DOI
McDonnell M. D., Ikeda S., Manton J. H. (2011). An introductory review of information theory in the context of computational neuroscience. Biol. Cybern. 105:55. 10.1007/s00422-011-0451-9 PubMed DOI
McKeegan D. E. F. (2002). Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res. 929, 48–58. 10.1016/S0006-8993(01)03376-5 PubMed DOI
Nakahama H., Suzuki H., Yamamoto M., Aikawa S., Nishioka S. (1968). A statistical analysis of spontaneous activity of central single neurons. Physiol. Behav. 3, 745–752. 10.1016/0031-9384(68)90146-7 DOI
Nemenman I., Bialek W., Van Steveninck R. D. R. (2004). Entropy and information in neural spike trains: progress on the sampling problem. Phys. Rev. E 69:056111. 10.1103/PhysRevE.69.056111 PubMed DOI
Neubauer H., Koppl C., Heil P. (2009). Spontaneous activity of auditory nerve fibers in the barn owl (tyto alba): analyses of interspike interval distributions. J. Neurophysiol. 101, 3169–3191. 10.1152/jn.90779.2008 PubMed DOI
Obeso J. A., Rodriguez-Oroz M. C., Rodriguez M., Lanciego J. L., Artieda J., Gonzalo N., et al. . (2000). Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 23, S8–S19. 10.1016/S1471-1931(00)00028-8 PubMed DOI
Pauluis Q., Baker S. N. (2000). An accurate measure of the instantaneous discharge probability, with application to unitary joint-event analysis. Neural Comput. 12, 647–669. 10.1162/089976600300015736 PubMed DOI
Perkel D. H., Bullock T. H. (1968). Neural coding. Neurosci. Res. Prog. Bull. 6:221–348.
Pouzat C., Chaffiol A. (2009). Automatic spike train analysis and report generation. an implementation with R, R2HTML and star. J. Neurosci. Methods 181, 119–144. 10.1016/j.jneumeth.2009.01.037 PubMed DOI
Principe J. C. (2010). Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives. New York, NY: Springer Science & Business Media. 10.1007/978-1-4419-1570-2 DOI
Rajdl K., Lansky P. (2013). Fano factor estimation. Math. Biosci. Eng. 11:105. 10.3934/mbe.2014.11.105 PubMed DOI
Rajdl K., Lansky P., Kostal L. (2017). Entropy factor for randomness quantification in neuronal data. Neural Netw. 95, 57–65. 10.1016/j.neunet.2017.07.016 PubMed DOI
Reeke G. N., Coop A. D. (2004). Estimating the temporal interval entropy of neuronal discharge. Neural Comput. 16, 941–970. 10.1162/089976604773135050 PubMed DOI
Rieke F., Warland D., Van Steveninck R., Bialek W. S. (1999). Spikes: Exploring the Neural Code, Vol 7. Cambridge: MIT Press.
Rigotti M., Barak O., Warden M. R., Wang X. J., Daw N. D., Miller E. K., et al. . (2013). The importance of mixed selectivity in complex cognitive tasks. Nature 497:585. 10.1038/nature12160 PubMed DOI PMC
Rodieck R., Kiang N.-S., Gerstein G. (1962). Some quantitative methods for the study of spontaneous activity of single neurons. J. Biophys. 2, 351–368. 10.1016/S0006-3495(62)86860-X PubMed DOI PMC
Rudd M. E., Brown L. G. (1997). Noise adaptation in integrate-and-fire neurons. Neural Comput. 9, 1047–1069. 10.1162/neco.1997.9.5.1047 PubMed DOI
Shadlen M. N., Newsome W. T. (1994). Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579. 10.1016/0959-4388(94)90059-0 PubMed DOI
Shannon C. E., Weaver W. (1949). The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.
Smith D. R., Smith G. K. (1965). A statistical analysis of the continual activity of single cortical neurones in the cat unanaesthetized isolated forebrain. Biophys. J. 5, 47–74. 10.1016/S0006-3495(65)86702-9 PubMed DOI PMC
Softky W. R., Koch C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPS. J. Neurosci. 13, 334–350. 10.1523/JNEUROSCI.13-01-00334.1993 PubMed DOI PMC
Song S., Lee J. A., Kiselev I., Iyengar V., Trapani J. G., Tania N. (2018). Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the Zebrafish lateral line. Sci Rep. 8, 1–14. 10.1038/s41598-018-33064-z PubMed DOI PMC
Stein R. B., Gossen E. R., Jones K. E. (2005). Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6:389. 10.1038/nrn1668 PubMed DOI
Steuer R., Ebeling W., Russell D. F., Bahar S., Neiman A., Moss F. (2001). Entropy and local uncertainty of data from sensory neurons. Phys. Rev. E 64:061911. 10.1103/PhysRevE.64.061911 PubMed DOI
Stevenson I. H. (2016). Flexible models for spike count data with both over-and under-dispersion. J. Comput. Neurosci. 41, 2-9-43. 10.1007/s10827-016-0603-y PubMed DOI
Theunissen F., Miller J. P. (1995). Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162. 10.1007/BF00961885 PubMed DOI
Thomas E. (1966). Mathematical models for the clustered firing of single cortical neurones. Br. J. Math. Stat. Psychol. 19, 151–162. 10.1111/j.2044-8317.1966.tb00365.x PubMed DOI
Thorpe S. J., Gautrais J. (1997). Rapid visual processing using spike asynchrony, in Advances in Neural Information Processing Systems, Cambridge, 901–907.
Trapani J., Nicolson T. (2011). Mechanism of spontaneous activity in afferent neurons of the Zebrafish lateral-line organ. J. Neurosci. 31, 1614–1623. 10.1523/JNEUROSCI.3369-10.2011 PubMed DOI PMC
Tuckwell H. C. (1988). Introduction to Theoretical Neurobiology: Vol. 2, Nonlinear and Stochastic Theories, Vol. 8. Cambridge: Cambridge University Press.
Tuckwell H. C. (1989). Stochastic processes in the neurosciences. SIAM. 10.1137/1.9781611970159 DOI
Victor J. D., Purpura K. P. (1997). Metric-space analysis of spike trains: theory, algorithms and application. Network 8, 127–164. 10.1088/0954-898X_8_2_003 DOI
Watters N., Reeke G. N. (2014). Neuronal spike train entropy estimation by history clustering. Neural Comput. 26, 1840–1872. 10.1162/NECO_a_00627 PubMed DOI