• This record comes from PubMed

Variability and Randomness of the Instantaneous Firing Rate

. 2021 ; 15 () : 620410. [epub] 20210607

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The apparent stochastic nature of neuronal activity significantly affects the reliability of neuronal coding. To quantify the encountered fluctuations, both in neural data and simulations, the notions of variability and randomness of inter-spike intervals have been proposed and studied. In this article we focus on the concept of the instantaneous firing rate, which is also based on the spike timing. We use several classical statistical models of neuronal activity and we study the corresponding probability distributions of the instantaneous firing rate. To characterize the firing rate variability and randomness under different spiking regimes, we use different indices of statistical dispersion. We find that the relationship between the variability of interspike intervals and the instantaneous firing rate is not straightforward in general. Counter-intuitively, an increase in the randomness (based on entropy) of spike times may either decrease or increase the randomness of instantaneous firing rate, in dependence on the neuronal firing model. Finally, we apply our methods to experimental data, establishing that instantaneous rate analysis can indeed provide additional information about the spiking activity.

See more in PubMed

Abramowitz M., Stegun I. (1972). Handbook of Mathematical Functions. New York, NY: American Association of Physics Teachers.

Adrian E. D. (1926). The impulses produced by sensory nerve-ending. J. Physiol. 62, 33–51. 10.1113/jphysiol.1926.sp002334 PubMed DOI PMC

Ainsworth M., Lee S., Cunningham M. O., Traub R. D., Kopell N. J., Whittington M. A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75, 572–583. 10.1016/j.neuron.2012.08.004 PubMed DOI

Awiszus F. (1988). Continuous functions determined by spike trains of a neuron subject to stimulation. Biol. Cybern. 58, 321–327. 10.1007/BF00363941 PubMed DOI

Barbieri F., Brunel N. (2007). Irregular persistent activity induced by synaptic excitatory feedback. Front. Comput. Neurosci. 1:5. 10.3389/neuro.10.005.2007 PubMed DOI PMC

Berger D., Pribram K., Wild H., Bridges C. (1990). An analysis of neural spike-train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency. Exp. Brain Res. 80, 129–134. 10.1007/BF00228854 PubMed DOI

Bershadskii A., Dremencov E., Fukayama D., Yadid G. (2001). Probabilistic properties of neuron spiking time-series obtained in vivo. Eur. Phys. J. B Condens. Matter Complex Syst. 24, 409–413. 10.1007/s10051-001-8691-4 DOI

Bessou P., Laporte Y., Pages B. (1968). A method of analysing the responses of spindle primary endings to fusimotor stimulation. J. Physiol. 196:37. 10.1113/jphysiol.1968.sp008492 PubMed DOI PMC

Bhumbra G., Dyball R. (2004). Measuring spike coding in the rat supraoptic nucleus. J. Physiol. 555, 281–296. 10.1113/jphysiol.2003.053264 PubMed DOI PMC

Buraças G. T., Albright T. D. (1999). Gauging sensory representations in the brain. Trends Neurosci. 22, 303–309. 10.1016/S0166-2236(98)01376-9 PubMed DOI

Casella G., Berger R. L. (2002). Statistical Inference. Grove, CA: Duxbury Pacific.

Cover T. M., Thomas J. A. (2012). Elements of Information Theory. New York, NY: John Wiley & Sons.

Cox D., Miller H. (1965). The Theory of Stochastic Processes. New York, NY: John Wiley & Sons.

Cox D. R., Lewis P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen & Co Ltd. 10.1007/978-94-011-7801-3 DOI

Dettner A., Münzberg S., Tchumatchenko T. (2016). Temporal pairwise spike correlations fully capture single-neuron information. Nat. Commun. 7:13805. 10.1038/ncomms13805 PubMed DOI PMC

Ditlevsen S., Lansky P. (2011). Firing variability is higher than deduced from the empirical coefficient of variation. Neural Comput. 23, 1944–1966. 10.1162/NECO_a_00157 PubMed DOI

Doron G., Von Heimendahl M., Schlattmann P., Houweling A. R., Brecht M. (2014). Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81, 653–663. 10.1016/j.neuron.2013.11.032 PubMed DOI

Dorval A. D., Russo G. S., Hashimoto T., Xu W., Grill W. M., Vitek J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson's disease. J. Neurophysiol. 100, 2807–2818. 10.1152/jn.90763.2008 PubMed DOI PMC

Eden U. T., Kass R. E. (2016). Chapter 107: Statistical models of spike train data, in Neuroscience in the 21st Century, eds Pfaff D. W., Volkow N. (New York, NY: Springer; ), 3137–3151. 10.1007/978-1-4939-3474-4_167 DOI

Gerstein G. L., Mandelbrot B. (1964). Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68. 10.1016/S0006-3495(64)86768-0 PubMed DOI PMC

Gerstner W., Kistler W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press. 10.1017/CBO9780511815706 DOI

Heil P., Neubauer H., Irvine D., Brown M. (2007). Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. J. Neurosci. 27, 8457–8474. 10.1523/JNEUROSCI.1512-07.2007 PubMed DOI PMC

Jacobs A. L., Fridman G., Douglas R. M., Alam N. M., Latham P. E., Prusky G. T., et al. . (2009). Ruling out and ruling in neural codes. Proc. Natl. Acad. Sci. U.S.A. 106, 5936–5941. 10.1073/pnas.0900573106 PubMed DOI PMC

Kostal L., Lansky P. (2006). Classification of stationary neuronal activity according to its information rate. Network 17, 193–210. 10.1080/09548980600594165 PubMed DOI

Kostal L., Lansky P., Pokora O. (2013). Measures of statistical dispersion based on shannon and fisher information concepts. Info. Sci. 235, 214–223. 10.1016/j.ins.2013.02.023 DOI

Kostal L., Lansky P., Rospars J. P. (2007a). Neuronal coding and spiking randomness. Eur. J. Neurosci. 26, 2693–2701. 10.1111/j.1460-9568.2007.05880.x PubMed DOI

Kostal L., Lansky P., Stiber M. (2018). Statistics of inverse interspike intervals: the instantaneous firing rate revisited. Chaos 28:106305. 10.1063/1.5036831 PubMed DOI

Kostal L., Lansky P., Zucca C. (2007b). Randomness and variability of the neuronal activity described by the ornstein-uhlenbeck model. Network 18, 63–75. 10.1080/09548980701243134 PubMed DOI

Kostal L., Marsalek P. (2010). Neuronal jitter: can we measure the spike timing dispersion differently. Chin. J. Physiol. 53, 454–464. 10.4077/CJP.2010.AMM031 PubMed DOI

Lansky P., Rodriguez R., Sacerdote L. (2004). Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput. 16, 477–489. 10.1162/089976604772744875 PubMed DOI

Levine M. W. (1991). The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol. Cybern. 65, 459–467. 10.1007/BF00204659 PubMed DOI

McDonnell M. D., Ikeda S., Manton J. H. (2011). An introductory review of information theory in the context of computational neuroscience. Biol. Cybern. 105:55. 10.1007/s00422-011-0451-9 PubMed DOI

McKeegan D. E. F. (2002). Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res. 929, 48–58. 10.1016/S0006-8993(01)03376-5 PubMed DOI

Nakahama H., Suzuki H., Yamamoto M., Aikawa S., Nishioka S. (1968). A statistical analysis of spontaneous activity of central single neurons. Physiol. Behav. 3, 745–752. 10.1016/0031-9384(68)90146-7 DOI

Nemenman I., Bialek W., Van Steveninck R. D. R. (2004). Entropy and information in neural spike trains: progress on the sampling problem. Phys. Rev. E 69:056111. 10.1103/PhysRevE.69.056111 PubMed DOI

Neubauer H., Koppl C., Heil P. (2009). Spontaneous activity of auditory nerve fibers in the barn owl (tyto alba): analyses of interspike interval distributions. J. Neurophysiol. 101, 3169–3191. 10.1152/jn.90779.2008 PubMed DOI

Obeso J. A., Rodriguez-Oroz M. C., Rodriguez M., Lanciego J. L., Artieda J., Gonzalo N., et al. . (2000). Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 23, S8–S19. 10.1016/S1471-1931(00)00028-8 PubMed DOI

Pauluis Q., Baker S. N. (2000). An accurate measure of the instantaneous discharge probability, with application to unitary joint-event analysis. Neural Comput. 12, 647–669. 10.1162/089976600300015736 PubMed DOI

Perkel D. H., Bullock T. H. (1968). Neural coding. Neurosci. Res. Prog. Bull. 6:221–348.

Pouzat C., Chaffiol A. (2009). Automatic spike train analysis and report generation. an implementation with R, R2HTML and star. J. Neurosci. Methods 181, 119–144. 10.1016/j.jneumeth.2009.01.037 PubMed DOI

Principe J. C. (2010). Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives. New York, NY: Springer Science & Business Media. 10.1007/978-1-4419-1570-2 DOI

Rajdl K., Lansky P. (2013). Fano factor estimation. Math. Biosci. Eng. 11:105. 10.3934/mbe.2014.11.105 PubMed DOI

Rajdl K., Lansky P., Kostal L. (2017). Entropy factor for randomness quantification in neuronal data. Neural Netw. 95, 57–65. 10.1016/j.neunet.2017.07.016 PubMed DOI

Reeke G. N., Coop A. D. (2004). Estimating the temporal interval entropy of neuronal discharge. Neural Comput. 16, 941–970. 10.1162/089976604773135050 PubMed DOI

Rieke F., Warland D., Van Steveninck R., Bialek W. S. (1999). Spikes: Exploring the Neural Code, Vol 7. Cambridge: MIT Press.

Rigotti M., Barak O., Warden M. R., Wang X. J., Daw N. D., Miller E. K., et al. . (2013). The importance of mixed selectivity in complex cognitive tasks. Nature 497:585. 10.1038/nature12160 PubMed DOI PMC

Rodieck R., Kiang N.-S., Gerstein G. (1962). Some quantitative methods for the study of spontaneous activity of single neurons. J. Biophys. 2, 351–368. 10.1016/S0006-3495(62)86860-X PubMed DOI PMC

Rudd M. E., Brown L. G. (1997). Noise adaptation in integrate-and-fire neurons. Neural Comput. 9, 1047–1069. 10.1162/neco.1997.9.5.1047 PubMed DOI

Shadlen M. N., Newsome W. T. (1994). Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579. 10.1016/0959-4388(94)90059-0 PubMed DOI

Shannon C. E., Weaver W. (1949). The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.

Smith D. R., Smith G. K. (1965). A statistical analysis of the continual activity of single cortical neurones in the cat unanaesthetized isolated forebrain. Biophys. J. 5, 47–74. 10.1016/S0006-3495(65)86702-9 PubMed DOI PMC

Softky W. R., Koch C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPS. J. Neurosci. 13, 334–350. 10.1523/JNEUROSCI.13-01-00334.1993 PubMed DOI PMC

Song S., Lee J. A., Kiselev I., Iyengar V., Trapani J. G., Tania N. (2018). Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the Zebrafish lateral line. Sci Rep. 8, 1–14. 10.1038/s41598-018-33064-z PubMed DOI PMC

Stein R. B., Gossen E. R., Jones K. E. (2005). Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6:389. 10.1038/nrn1668 PubMed DOI

Steuer R., Ebeling W., Russell D. F., Bahar S., Neiman A., Moss F. (2001). Entropy and local uncertainty of data from sensory neurons. Phys. Rev. E 64:061911. 10.1103/PhysRevE.64.061911 PubMed DOI

Stevenson I. H. (2016). Flexible models for spike count data with both over-and under-dispersion. J. Comput. Neurosci. 41, 2-9-43. 10.1007/s10827-016-0603-y PubMed DOI

Theunissen F., Miller J. P. (1995). Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162. 10.1007/BF00961885 PubMed DOI

Thomas E. (1966). Mathematical models for the clustered firing of single cortical neurones. Br. J. Math. Stat. Psychol. 19, 151–162. 10.1111/j.2044-8317.1966.tb00365.x PubMed DOI

Thorpe S. J., Gautrais J. (1997). Rapid visual processing using spike asynchrony, in Advances in Neural Information Processing Systems, Cambridge, 901–907.

Trapani J., Nicolson T. (2011). Mechanism of spontaneous activity in afferent neurons of the Zebrafish lateral-line organ. J. Neurosci. 31, 1614–1623. 10.1523/JNEUROSCI.3369-10.2011 PubMed DOI PMC

Tuckwell H. C. (1988). Introduction to Theoretical Neurobiology: Vol. 2, Nonlinear and Stochastic Theories, Vol. 8. Cambridge: Cambridge University Press.

Tuckwell H. C. (1989). Stochastic processes in the neurosciences. SIAM. 10.1137/1.9781611970159 DOI

Victor J. D., Purpura K. P. (1997). Metric-space analysis of spike trains: theory, algorithms and application. Network 8, 127–164. 10.1088/0954-898X_8_2_003 DOI

Watters N., Reeke G. N. (2014). Neuronal spike train entropy estimation by history clustering. Neural Comput. 26, 1840–1872. 10.1162/NECO_a_00627 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...