Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FPU15-00448, 802 PID2019-110709RB-100, RED2018-102417-T,RTI2018-101627-B-I00
Spanish Government
VA317P18. Infra- 803 red2018-UVA06
Junta de Castilla y León
0624_2IQBIONEURO_6_E
Interreg V España Portugal POCTEP
S2018/BAA-4480
Comunidad de Madrid
BIOMASKIN
Universidad Carlos III de Madrid
Centro en Red de Medicina Regenerativa y Terapia Celular
Castilla y León
Cátedra Fundación Ramón Areces
Fundación Ramón Areces.
PubMed
34203144
PubMed Central
PMC8271496
DOI
10.3390/polym13132114
PII: polym13132114
Knihovny.cz E-resources
- Keywords
- bilayered in vitro skin substitutes, bioengineered skin, elastin like recombinamers, fibrin hydrogels, human plasma-derived fibrin hydrogels, hybrid plasma-elastin hydrogels, skin tissue engineering,
- Publication type
- Journal Article MeSH
Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.
BIOFORGE University of Valladolid CIBER BBN 47011 Valladolid Spain
Instituto de Investigación Sanitaria Gregorio Marañón 28007 Madrid Spain
See more in PubMed
Mazlyzam A., Aminuddin B., Fuzina N., Norhayati M., Fauziah O., Isa M., Saim L., Ruszymah B. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns. 2007;33:355–363. doi: 10.1016/j.burns.2006.08.022. PubMed DOI
Llames S., Del Rio M., Larcher F., García E., García M., Escámez M.J., Jorcano J.L., Holguín P., Meana A. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation. 2004;77:350–355. doi: 10.1097/01.TP.0000112381.80964.85. PubMed DOI
Meana A., Iglesias J., Del Rio M., Larcher F., Madrigal B., Fresno M., Martin C., Roman F.S., Tevar F. Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns. 1998;24:621–630. doi: 10.1016/S0305-4179(98)00107-7. PubMed DOI
Guerrero-Aspizua S., García M., Murillas R., Retamosa L., Illera N., Duarte B., Holguín A., Puig S., Hernández M.I., Meana A., et al. Development of a bioengineered skin-humanized mouse model for psoriasis: Dissecting epidermal-lymphocyte interacting pathways. Am. J. Pathol. 2010;177:3112–3124. doi: 10.2353/ajpath.2010.100078. PubMed DOI PMC
Martínez-Santamaría L., Conti C.J., Llames S., García E., Retamosa L., Holguin A., Illera N., Duarte B., Camblor L., Llaneza J.M., et al. The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model. Exp. Dermatol. 2013;22:195–201. doi: 10.1111/exd.12097. PubMed DOI
Cubo N., Garcia M., Del Cañizo J.F., Velasco D., Jorcano J.L. 3D bioprinting of functional human skin: Production and in vivo analysis. Biofabrication. 2016;9:015006. doi: 10.1088/1758-5090/9/1/015006. PubMed DOI
Marck R.E., Middelkoop E., Breederveld R.S. Considerations on the use of platelet-rich plasma, specifically for burn treatment. J. Burn. Care Res. 2014;35:219–227. doi: 10.1097/BCR.0b013e31829b334e. PubMed DOI
Llames S., García E., García V., Del Rio M., Larcher F., Jorcano J.L., López E., Holguín P., Miralles F., Otero J., et al. Clinical results of an autologous engineered skin. Cell Tissue Bank. 2006;7:47–53. doi: 10.1007/s10561-004-7253-4. PubMed DOI
Gómez C., Galán J., Torrero V., Ferreiro I., Pérez D., Palao R., Martínez E., Llames S., Meana A., Holguín P. Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns. 2011;37:580–589. doi: 10.1016/j.burns.2010.10.005. PubMed DOI
Burnouf T., Goubran H.A., Chen T.-M., Ou K.-L., El-Ekiaby M., Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev. 2013;27:77–89. doi: 10.1016/j.blre.2013.02.001. PubMed DOI
Marx R.E., Carlson E.R., Eichstaedt R.M., Schimmele S.R., Strauss J.E., Georgeff K.R. Platelet rich plasma, growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998;85:638–646. doi: 10.1016/S1079-2104(98)90029-4. PubMed DOI
Geer D.J., Swartz D.D., Andreadis S.T. Fibrin promotes migration in a three dimensional in vitro model of wound regeneration. Tissue Eng. 2002;8:787–798. doi: 10.1089/10763270260424141. PubMed DOI
Gil Park Y., Lee I.H., Park E.S., Kim J.Y. Hydrogel and platelet-rich plasma combined treatment to accelerate wound healing in a nude mouse model. Arch. Plast. Surg. 2017;44:194–201. doi: 10.5999/aps.2017.44.3.194. PubMed DOI PMC
Isola G., Polizzi A., Alibrandi A., Williams R.C., Giudice A.L. Analysis of galectin-3 levels as a source of coronary heart disease risk during periodontitis. J. Periodontal Res. 2021;56:597–605. doi: 10.1111/jre.12860. PubMed DOI
Isola G., Polizzi A., Santonocito S., Alibrandi A., Williams R.C. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J. Periodontol. 2021 doi: 10.1002/JPER.21-0049. PubMed DOI
Johnson B.Z., Stevenson A.W., Prêle C.M., Fear M.W., Wood F.M. The Role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8:101. doi: 10.3390/biomedicines8050101. PubMed DOI PMC
McLeod K., Walker J.T., Hamilton D.W. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. J. Cell Commun. Signal. 2018;12:281–287. doi: 10.1007/s12079-018-0453-7. PubMed DOI PMC
Montero A., Acosta S., Hernández R., Elvira C., Jorcano J.L., Velasco D. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering. J. Biomed. Mater. Res. Part A. 2021;109:500–514. doi: 10.1002/jbm.a.37033. PubMed DOI
Zhao H., Ma L., Zhou J., Mao Z., Gao C., Shen J. Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed. Mater. 2007;3:015001. doi: 10.1088/1748-6041/3/1/015001. PubMed DOI
Tuan T.-L., Song A., Chang S., Younai S., Nimni M.E. In vitro fibroplasia: Matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 1996;223:127–134. doi: 10.1006/excr.1996.0065. PubMed DOI
Zhang X., Yao D., Zhao W., Zhang R., Yu B., Ma G., Li Y., Hao D., Xu F. Engineering platelet—Rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value. Adv. Funct. Mater. 2021;31 doi: 10.1002/adfm.202009258. DOI
Burmeister D.M., Roy D.C., Becerra S.C., Natesan S., Christy R.J. In situ delivery of fibrin-based hydrogels prevents contraction and reduces inflammation. J. Burn Care Res. 2017;39:40–53. doi: 10.1097/BCR.0000000000000576. PubMed DOI
Burmeister D.M., Stone R., Wrice N.L., Becerra S.C., Natesan S., Christy R.J. Fibrin hydrogels prevent contraction and deliver adipose stem cells to debrided deep partial thickness burns for accelerated angiogenesis. FASEB J. 2016;30:1300.7. doi: 10.1096/fasebj.30.1_supplement.1300.7. PubMed DOI
Natesan S., Stone R., Coronado R.E., Wrice N.L., Kowalczewski A.C., Zamora D.O., Christy R.J. PEGylated platelet-free blood plasma-based hydrogels for full-thickness wound regeneration. Adv. Wound Care. 2019;8:323–340. doi: 10.1089/wound.2018.0844. PubMed DOI PMC
Ii R.S., Wall J.T., Natesan S., Christy R.J., Stone R. PEG-plasma hydrogels increase epithelialization using a human ex vivo skin model. Int. J. Mol. Sci. 2018;19:3156. doi: 10.3390/ijms19103156. PubMed DOI PMC
Carriel V., Garzón I., Jiménez J.-M., Oliveira C.-X., Arias-Santiago S., Campos A., Sánchez-Quevedo M.-C., Alaminos M. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs. 2011;196:1–12. doi: 10.1159/000330682. PubMed DOI
Haslik W., Kamolz L.-P., Manna F., Hladik M., Rath T., Frey M. Management of full-thickness skin defects in the hand and wrist region: First long-term experiences with the dermal matrix Matriderm. J. Plast. Reconstr. Aesthetic. Surg. 2010;63:360–364. doi: 10.1016/j.bjps.2008.09.026. PubMed DOI
Rnjak J., Wise S., Mithieux S., Weiss A.S. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng. Part B Rev. 2011;17:81–91. doi: 10.1089/ten.teb.2010.0452. PubMed DOI
Vrhovski B., Weiss A.S. Biochemistry of tropoelastin. JBIC J. Biol. Inorg. Chem. 1998;258:1–18. doi: 10.1046/j.1432-1327.1998.2580001.x. PubMed DOI
Ramirez F. Pathophysiology of the microfibril/elastic fiber system: Introduction. Matrix Biol. 2000;19:455–456. doi: 10.1016/S0945-053X(00)00098-6. PubMed DOI
Rodríguez-Cabello J.C., Prieto S., Reguera J., Arias F.J., Ribeiro A. Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J. Biomater. Sci. Polym. Ed. 2007;18:269–286. doi: 10.1163/156856207779996904. PubMed DOI
Meyer D.E., Chilkot A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules. 2002;3:357–367. doi: 10.1021/bm015630n. PubMed DOI
Rodríguez-Cabello J.C., Martín L., Alonso M., Arias F.J., Testera A.M. “Recombinamers” as advanced materials for the post-oil age. Polymer. 2009;50:5159–5169. doi: 10.1016/j.polymer.2009.08.032. DOI
Chow D., Nunalee M.L., Lim D.W., Simnick A.J., Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater. Sci. Eng. R Rep. 2008;62:125–155. doi: 10.1016/j.mser.2008.04.004. PubMed DOI PMC
MacEwan S., Chilkoti A. Elastin-like polypeptides: Biomedical applications of tunable biopolymers. Biopolymers. 2010;94:60–77. doi: 10.1002/bip.21327. PubMed DOI
Urry D.W. Elastic molecular machines in metabolism and soft-tissue restoration. Trends Biotechnol. 1999;17:249–257. doi: 10.1016/S0167-7799(99)01306-2. PubMed DOI
Urry D.W., Pattanaik A., Xu J., Woods T.C., McPherson D.T., Parker T.M. Elastic protein-based polymers in soft tissue augmentation and generation. J. Biomater. Sci. Polym. Ed. 1998;9:1015–1048. doi: 10.1163/156856298X00316. PubMed DOI
Zhang H., Iwama M., Akaike T., Urry D.W., Pattanaik A., Parker T.M., Konishi I., Nikaido T. Human amniotic cell sheet harvest using a novel temperature-responsive culture surface coated with protein-based polymer. Tissue Eng. 2006;12:391–401. doi: 10.1089/ten.2006.12.391. PubMed DOI
Urry D.W. What Sustains Life? Consilient Mechanisms for Protein-Based Machines and Materials. Springer; New York, NY, USA: 2006.
Ibáñez-Fonseca A., Ramos T.L., González de Torre I., Sánchez-Abarca L.I., Muntión S., Arias F.J., Del Cañizo M.C., Alonso M., Sánchez-Guijo F., Rodríguez-Cabello J.C. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine. J Tissue Eng. Regen. Med. 2018;12:e1450–e1460. doi: 10.1002/term.2562. PubMed DOI
Changi K., Bosnjak B., Gonzalez-Obeso C., Kluger R., Rodríguez-Cabello J.C., Hoffmann O., Epstein M.M. Biocompatibility and immunogenicity of elastin-like recombinamer biomaterials in mouse models. J. Biomed. Mater. Res. Part A. 2018;106:924–934. doi: 10.1002/jbm.a.36290. PubMed DOI
Urry D.W., Parker T.M., Reid M.C., Gowda D.C. Biocompatibility of the Bioelastic Materials, Poly(GVGVP) and Its γ-irradiation cross-linked Matrix: Summary of generic biological test results. J. Bioact. Compat. Polym. 1991;6:263–282. doi: 10.1177/088391159100600306. DOI
De Torre I.G., Wolf F., Santos M., Rongen L., Alonso M., Jockenhoevel S., Rodriguez-Cabello J.C., Mela P. Elastin-like recombinamer-covered stents: Towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomater. 2015;12:146–155. doi: 10.1016/j.actbio.2014.10.029. PubMed DOI
Salinas-Fernández S., Santos M., Alonso M., Quintanilla L., Rodríguez-Cabello J.C. Genetically engineered elastin-like recombinamers with sequence-based molecular stabilization as advanced bioinks for 3D bioprinting. Appl. Mater. Today. 2020;18:100500. doi: 10.1016/j.apmt.2019.100500. DOI
Buttafoco L., Engbers—Buijtenhuijs P., Poot A., Dijkstra P., Daamen W., Van Kuppevelt T., Vermes I., Feijen J. First steps towards tissue engineering of small—Diameter blood vessels: Preparation of flat scaffolds of collagen and elastin by means of freeze drying. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006;77:357–368. doi: 10.1002/jbm.b.30444. PubMed DOI
Grover C.N., Cameron R.E., Best S.M. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. Mater. 2012;10:62–74. doi: 10.1016/j.jmbbm.2012.02.028. PubMed DOI
Ryan A.J., O’Brien F.J. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials. 2015;73:296–307. doi: 10.1016/j.biomaterials.2015.09.003. PubMed DOI
Daamen W.F., Nillesen S.T., Wismans R.G., Reinhardt D.P., Hafmans T., Veerkamp J.H., Van Kuppevelt T.H. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng. Part A. 2008;14:349–360. doi: 10.1089/tea.2007.0076. PubMed DOI
Daamen W., Nillesen S., Hafmans T., Veerkamp J., van Luyn M., van Kuppevelt T. Tissue response of defined collagen–elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials. 2005;26:81–92. doi: 10.1016/j.biomaterials.2004.02.011. PubMed DOI
Annabi N., Mithieux S., Weiss A.S., Dehghani F. The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials. 2009;30:1–7. doi: 10.1016/j.biomaterials.2008.09.031. PubMed DOI
Annabi N., Mithieux S., Boughton E.A., Ruys A.J., Weiss A.S., Dehghani F. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials. 2009;30:4550–4557. doi: 10.1016/j.biomaterials.2009.05.014. PubMed DOI
Testera A.M., Girotti A., de Torre I.G., Quintanilla L., Santos M., Alonso M., Rodríguez-Cabello J.C. Biocompatible elastin-like click gels: Design, synthesis and characterization. J. Mater. Sci. Mater. Med. 2015;26:1–13. doi: 10.1007/s10856-015-5435-1. PubMed DOI
De Torre I.G., Weber M., Quintanilla L., Alonso M., Jockenhoevel S., Cabello J.C.R., Mela P. Hybrid elastin-like recombinamer-fibrin gels: Physical characterization and in vitro evaluation for cardiovascular tissue engineering applications. Biomater. Sci. 2016;4:1361–1370. doi: 10.1039/C6BM00300A. PubMed DOI
Weber M., de Torre I.G., Moreira R., Frese J., Oedekoven C.A., Alonso M., Cabello C.J.R., Jockenhoevel S., Mela P. Multiple-step injection molding for fibrin-based tissue-engineered heart Valves. Tissue Eng. Part C Methods. 2015;21:832–840. doi: 10.1089/ten.tec.2014.0396. PubMed DOI PMC
Staubli S.M., Cerino G., De Torre I.G., Alonso M., Oertli D., Eckstein F., Glatz K., Cabello J.C.R., Marsano A. Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials. 2017;135:30–41. doi: 10.1016/j.biomaterials.2017.04.047. PubMed DOI
AABB (American Association of Blood Banks) Technical Manual. 18th ed. AABB; Bethesda, MD, USA: 2014.
Brecher M.E. Technical Manual. 15th ed. AABB; Bethesda, MD, USA: 2005. p. 68.
Rodríguez-Cabello J.C., Girroti A., Ribeiro A., Arias F.J. Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials. In: Navarro M., Planell J.A., editors. Nanotechnology in Regenerative Medicine: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2012. pp. 17–38. PubMed
de Torre I.G., Santos M., Quintanilla L., Testera A., Alonso M., Rodriguez-Cabello J.C. Elastin-like recombinamer catalyst-free click gels: Characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomater. 2014;10:2495–2505. doi: 10.1016/j.actbio.2014.02.006. PubMed DOI
Vanderhooft J.L., Mann B.K., Prestwich G.D. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules. 2007;8:2883–2889. doi: 10.1021/bm0703564. PubMed DOI
Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cells. 1975;6:331–343. doi: 10.1016/S0092-8674(75)80001-8. PubMed DOI
Del Rio M., Larcher F., Serrano F., Meana A., Muñoz M., García M., Munoz E., Martin C., Bernad A., Jorcano J.L. A Preclinical model for the analysis of genetically modified human skin in vivo. Hum. Gene Ther. 2002;13:959–968. doi: 10.1089/10430340252939069. PubMed DOI
Chernysh I.N., Weisel J.W. Dynamic imaging of fibrin network formation correlated with other measures of polymerization. Blood. 2008;111:4854–4861. doi: 10.1182/blood-2007-08-105247. PubMed DOI PMC
Crescenzi V., Cornelio L., Di Meo C., Nardecchia S., Lamanna R. Novel hydrogels via click chemistry: Synthesis and potential biomedical applications. Biomacromolecules. 2007;8:1844–1850. doi: 10.1021/bm0700800. PubMed DOI
Wang Q., Chan T.R., Hilgraf R., Fokin V.V., Sharpless K.B., Finn M.G. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. J. Am. Chem. Soc. 2003;125:3192–3193. doi: 10.1021/ja021381e. PubMed DOI
Link A.J., Tirrell D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc. 2003;125:11164–11165. doi: 10.1021/ja036765z. PubMed DOI
Han L., Lu X., Liu K., Wang K., Fang L., Weng L.-T., Zhang H., Tang Y., Ren F., Zhao C., et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano. 2017;11:2561–2574. doi: 10.1021/acsnano.6b05318. PubMed DOI
Liu J., Chen C., He C., Zhao J., Yang X., Wang H. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano. 2012;6:8194–8202. doi: 10.1021/nn302874v. PubMed DOI
Lee F., Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater. 2013;9:5143–5152. doi: 10.1016/j.actbio.2012.08.036. PubMed DOI
McHale M.K., Setton L.A., Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 2005;11:1768–1779. doi: 10.1089/ten.2005.11.1768. PubMed DOI
Ryan E.A., Mockros L.F., Weisel J.W., Lorand L. Structural origins of fibrin clot rheology. Biophys. J. 1999;77:2813–2826. doi: 10.1016/S0006-3495(99)77113-4. PubMed DOI PMC
Weisel J.W., Litvinov R.I. Fibrin formation, structure and properties. Prokaryotic Cytoskelet. 2017;82:405–456. PubMed PMC
De Torre I.G., Quintanilla L., Pinedo-Martín G., Alonso M., Rodríguez-Cabello J.C. Nanogel formation from dilute solutions of clickable elastin-like recombinamers and its dependence on temperature: Two fractal gelation modes. ACS Appl. Mater. Interfaces. 2014;6:14509–14515. doi: 10.1021/am503651y. PubMed DOI
Weise J.W., Litvinov R.I. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013;121:1712–1719. PubMed PMC
Li W., Sigley J., Pieters M., Helms C.C., Nagaswami C., Weisel J.W., Guthold M. Fibrin fiber stiffness is strongly affected by fiber diameter, but not by fibrinogen glycation. Biophys. J. 2016;110:1400–1410. doi: 10.1016/j.bpj.2016.02.021. PubMed DOI PMC
Rowe S.L., Lee S., Stegemann J.P. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 2007;3:59–67. doi: 10.1016/j.actbio.2006.08.006. PubMed DOI PMC
Weisel J., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: Clot structure and assembly are kinetically controlled. Biophys. J. 1992;63:111–128. doi: 10.1016/S0006-3495(92)81594-1. PubMed DOI PMC
Kurniawan N.N., Grimbergen J., Koopman J., Koenderink G.H. Factor XIII stiffens fibrin clots by causing fiber compaction. J. Thromb. Haemost. 2014;12:1687–1696. doi: 10.1111/jth.12705. PubMed DOI
Davis H., Miller S., Case E., Leach J. Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater. 2011;7:691–699. doi: 10.1016/j.actbio.2010.09.007. PubMed DOI
Lai V.K., Frey C.R., Kerandi A.M., Lake S., Tranquillo R.T., Barocas V.H. Microstructural and mechanical differences between digested collagen–fibrin co-gels and pure collagen and fibrin gels. Acta Biomater. 2012;8:4031–4042. doi: 10.1016/j.actbio.2012.07.010. PubMed DOI PMC
Ruszymah B., Chua K., Mazlyzam A., Aminuddin B. Formation of tissue engineered composite construct of cartilage and skin using high density polyethylene as inner scaffold in the shape of human helix. Int. J. Pediatr. Otorhinolaryngol. 2011;75:805–810. doi: 10.1016/j.ijporl.2011.03.012. PubMed DOI
Ronfard V., Rives J.M., Neveux Y., Carsin H., Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix1,2. Transplantation. 2000;70:1588–1598. doi: 10.1097/00007890-200012150-00009. PubMed DOI
Grinnell F., Lamke C. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 1984;66:51–63. doi: 10.1242/jcs.66.1.51. PubMed DOI
Yamato M., Adachi E., Yamamoto K., Hayashi T. Condensation of collagen fibrils to the direct vicinity of fibroblasts as a cause of gel Contraction1. J. Biochem. 1995;117:940–946. doi: 10.1093/oxfordjournals.jbchem.a124824. PubMed DOI
Ribeiro A., Arias F.J., Reguera J., Alonso M., Rodríguez-Cabello J.C. Influence of the amino-acid sequence on the inverse temperature transition of elastin-like polymers. Biophys. J. 2009;97:312–320. doi: 10.1016/j.bpj.2009.03.030. PubMed DOI PMC
Nien Y.-D., Han Y.-P., Tawil B., Chan L.S., Tuan T.-L., Garner W.L. Fibrinogen inhibits fibroblast-mediated contraction of collagen. Wound Repair Regen. 2003;11:380–385. doi: 10.1046/j.1524-475X.2003.11511.x. PubMed DOI PMC
Ehrlich H.P., Wyler D.J. Fibroblast contraction of collagen lattices in vitro: Inhibition by chronic inflammatory cell mediators. J. Cell. Physiol. 1983;116:345–351. doi: 10.1002/jcp.1041160312. PubMed DOI
Rnjak J., Li Z., Maitz P.K., Wise S., Weiss A.S. Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin. Biomaterials. 2009;30:6469–6477. doi: 10.1016/j.biomaterials.2009.08.017. PubMed DOI
Lee H.-J., Sen A., Bae S., Lee J.S., Webb K. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration. Acta Biomater. 2015;14:43–52. doi: 10.1016/j.actbio.2014.12.007. PubMed DOI PMC
Chen X., Thibeault S.L. Biocompatibility of a synthetic extracellular matrix on immortalized vocal fold fibroblasts in 3-D culture. Acta Biomater. 2010;6:2940–2948. doi: 10.1016/j.actbio.2010.01.032. PubMed DOI PMC
Zeltinger J., Sherwood J.K., Graham D.A., Müeller R., Griffith L. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–572. doi: 10.1089/107632701753213183. PubMed DOI
Mazzucotelli J.-P., Klein-Soyer C., Beretz A., Brisson C., Archipoff G., Cazenave J.-P. Endothelial cell seeding: Coating dacron and expanded polytetrafluoroethylene vascular grafts with a biological glue allows adhesion and growth of human saphenous vein endothelial cells. Int. J. Artif. Organs. 1991;14:482–490. doi: 10.1177/039139889101400806. PubMed DOI
Wang Y., Wang G., Luo X., Qiu J., Tang C. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns. 2012;38:414–420. doi: 10.1016/j.burns.2011.09.002. PubMed DOI