Industrial biotransformations catalyzed by microbial lipases: screening platform and commercial aspects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PICT 2015- 2596
FONCyT
PIUNT 2020 D 681
UNT
CEP - Centrální evidence projektů
PubMed
34318446
DOI
10.1007/s12223-021-00900-1
PII: 10.1007/s12223-021-00900-1
Knihovny.cz E-zdroje
- MeSH
- biotransformace MeSH
- esterifikace MeSH
- hydrolýza MeSH
- katalýza MeSH
- lipasa * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipasa * MeSH
The successfulness of a lipase-catalyzed industrial process depends on a proper lipase selection. In this work, an alternative screening platform for industrially important biotransformations catalyzed by microbial lipases was proposed. Thus, the reactivity of sixty lipase activities from spore-forming microorganisms towards hydrolytic and transesterification reactions by using p-nitrophenyl palmitate as a chromogenic acyl donor substrate was explored. Only three biocatalysts were capable of catalyzing all reactions tested. Fourteen biocatalysts did not show hydrolytic activity at all; however, they displayed transesterification activities using ethanol, starch, low-methoxyl (LM) pectin, high-methoxyl (HM) pectin, or vitamin C as acyl acceptors. Using heat-treated biocatalysts, hydrolytic activities were not highly correlated with the corresponding transesterification activities using ethanol (r = -0.058, p = 0.660), starch (r = 0.431, p = 0.001), LM pectin (r = -0.010, p = 0.938), HM pectin (r = 0.167, p = 0.202), and vitamin C (r = -0.048, p = 0.716) as acyl acceptor. In addition, to the best of our knowledge, several transesterification activities produced from microorganisms of the genus Bacillus, Brevibacillus, Lysinibacillus, Geobacillus, or Sporosarcina were reported for first time. Finally, the global lipase market was presented and segmented by date, application, geography and player highlighting the commercial contribution of microbial lipases.
Facultad de Bioquímica Química y Farmacia Batalla de Ayacucho 471 T4000INI Tucuman Argentina
PROIMI CONICET Av Belgrano Y Pasaje Caseros T4001 MVB Tucuman Argentina
Zobrazit více v PubMed
Adak S, Banerjee R (2016) A green approach for starch modification: esterification by lipase and novel imidazolium surfactant. Carbohydr Polym 150:359–368. https://doi.org/10.1016/j.carbpol.2016.05.038 PubMed DOI
Alissandratos A, Halling PJ (2012) Enzymatic acylation of starch. Bioresour Technol 115:41–47. https://doi.org/10.1016/j.biortech.2011.11.030 PubMed DOI
Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490. https://doi.org/10.1039/C3CS35484A PubMed DOI
Berlemont R, Spee O, Delsaute M, Lara Y, Schuldes J, Simon C, Power P, Daniel R, Galleni M (2013) Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification. Rev Argent Microbiol 45:3–12 PubMed
Bezbradica D, Stojanović M, Veličković D, Dimitrijević A, Carević M, Mihailović M, Milosavić N (2013) Kinetic model of lipase-catalyzed conversion of ascorbic acid and oleic acid to liposoluble vitamin C ester. Biochem Eng J 71:89–96. https://doi.org/10.1016/j.bej.2012.12.001 DOI
Chandra P, Enespa SR, Aroa PK (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Factories 19:169. https://doi.org/10.1016/j.scp.2020.100231 DOI
Chaves S, Pera LM, Avila CM, Romero CM, Baigorí M, Morán Vieyra FE, Borsarelli CD, Chehin R (2016) Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils. RSC Adv 6:8528–8538. https://doi.org/10.1039/C5RA19590J DOI
Chen J, Liu W, Liu C-M, Li T, Liang R-H, Luo S-J (2015) Pectin modifications: a review. Crit Rev Food Sci Nutr 55:1684–1698. https://doi.org/10.1080/10408398.2012.718722 PubMed DOI
Ćorović M, Milivojević A, Simović M, Banjanac K, Pjanović R, Bezbradica RD (2020) Enzymatically derived oil-based L-ascorbyl esters: synthesis, antioxidant properties and controlled release from cosmetic formulations. Sustain Chem Pharm 15:100231. https://doi.org/10.1016/j.scp.2020.100231 DOI
Costas L, Bosio VE, Pandey A, Castro GR (2008) Effects of organic solvents on immobilized lipase in pectin microspheres. Appl Biochem Biotechnol 151:578–586. https://doi.org/10.1007/s12010-008-8233-0 PubMed DOI
Dettori L, Jelsch C, Guiavarc’h Y, Delaunay S, Framboisier X, Chevalot I, Humeau C (2018) Molecular rules for selectivity in lipase-catalyzed acylation of lysine. Process Biochem 74:50–60. https://doi.org/10.1016/j.procbio.2018.07.021 DOI
Dong-Mei L, Chen J, Yan-Ping S (2018) Advances on methods and easy separated support materials for enzymes immobilization. Trends Anal Chem 102:332–342. https://doi.org/10.1016/j.trac.2018.03.011 DOI
Geoffry K, Achur RN (2018) Screening and production of lipase from fungal organisms. Biocatal Agric Biotechnol 14:241–253. https://doi.org/10.1016/j.bcab.2018.03.009 DOI
Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68:1–21. https://doi.org/10.1016/j.molcatb.2010.09.002 DOI
Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798. https://doi.org/10.1016/j.biotechadv.2009.06.001 PubMed DOI
Huang X, Chen F, Sun B, Zhang H, Tian Y, Zhu C (2017) Isolation of a fluoroglycofen-degrading KS-1 strain and cloning of a novel esterase gene fluE. FEMS Microbiol Lett 364:16. https://doi.org/10.1093/femsle/fnx168 DOI
Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014 PubMed DOI
Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821. https://doi.org/10.1007/s10450-014-9623-y DOI
Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J (2016) Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb Technol 90:1–18. https://doi.org/10.1016/j.enzmictec.2016.04.004 PubMed DOI
Karmee SK (2009) Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Appl Microbiol Biotechnol 81:1013–1022. https://doi.org/10.1007/s00253-008-1781-y PubMed DOI
Li D, Wang W, Durrani R, Li X, Yang B, Wang Y (2016) Simplified enzymatic upgrading of high-acid rice bran oil using ethanol as a novel acyl acceptor. J Agric Food Chem 64:6730–6737. https://doi.org/10.1021/acs.jafc.6b02518 PubMed DOI
Li Q, Xu J, Du W, Li Y, Liu D (2013) Ethanol as the acyl acceptor for biodiesel production. Renew Sust Energ Rev 25:742–748. https://doi.org/10.1016/j.rser.2013.05.043 DOI
MarketsandMarkets™ (2018) Microbial lipase market by application (cleaning agents, animal feed, dairy products, bakery products, and confectionery products), form (powder and liquid), source (fungi and bacteria), and region - global forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/microbial-lipase-market-248464055.html . Accessed 7 Apr 2021
Maurer S, Bayer R, Budde M, Kerber M, Farivar-Memar F, Däuwel J, Berg T, Rollie S (2016) Method for immobilizing and drying enzymes. Applicant: BASF SE [DE]. US2016312209 (A1)
Mesa M, Pereañez JA, Preciado LM, Bernal C (2018) How the Triton X-100 modulates the activity/stability of the Thermomyces lanuginose lipase: insights from experimental and molecular docking approaches. Int J Biol Macromol 120:2410–2417. https://doi.org/10.1016/j.ijbiomac.2018.09.009 PubMed DOI
Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. https://doi.org/10.1093/nar/8.19.4321 PubMed DOI PMC
O’Loughlin IB, Murray BA, Kelly PM, FitzGerald RJ, Brodkorb A (2012) Enzymatic hydrolysis of heat-induced aggregates of whey protein isolate. J Agric Food Chem 60:4895–4904. https://doi.org/10.1021/jf205213n PubMed DOI
Pencreac`h G, Baratti JC, (2001) Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations. Enzyme Microb Tecnol 28:473–479. https://doi.org/10.1016/S0141-0229(00)00355-0 DOI
Posocco B, Dreussi E, de Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8:2569–2615. https://doi.org/10.3390/ma8052569 DOI PMC
Rúa ML, Schmidt-Dannert C, Wahl S, Sprauer A, Schmid RD (1997) Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity. J Biotechnol 56:89–102. https://doi.org/10.1016/S0168-1656(97)00079-5 PubMed DOI
Salvatierra HN, Regner EL, Baigori MD, Pera LM (2021) Orchestration an extracellular lipase production from Aspergillus niger MYA 135: biomass morphology and fungal physiology. AMB Express. https://doi.org/10.1186/s13568-021-01202-y PubMed DOI PMC
Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S (2013) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 3:12485–12511. https://doi.org/10.1039/C3RA40818C DOI
Tallur PN, Sajjan DB, Mulla SI, Talwar MP, Pragasam A, Nayak VM, Ninnekar HZ, Bhat SS (2016) Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech 6:28. https://doi.org/10.1007/s13205-015-0332-3 PubMed DOI PMC
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991 PubMed DOI PMC
Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides. J Bacteriol 138:663–670 DOI
WIPO (2021) PATENTSCOPE. https://www.wipo.int/patentscope/en/ . Accessed 7 Apr 2021
Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307. https://doi.org/10.1002/jobm.201500230 PubMed DOI
Zhao J, Liu S, Gao Y, Ma M, Yan X, Cheng D, Wan D, Zeng Z, Yu P, Gong D (2021a) Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. Int J Biol Macromol 176:126–136. https://doi.org/10.1016/j.ijbiomac.2021.01.214 PubMed DOI
Zhao J, Ma M, Zeng Z, Yu P, Gong D (2021b) Production, purification and biochemical characterization of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6. J Enzym Inhib Med Chem 36:248–256. https://doi.org/10.1080/14756366.2020.1861607 DOI
Zhao TT, No DS, Kim Y, Kim YS, Kim I-H (2014) Novel strategy for lipase-catalyzed synthesis of biodiesel using blended alcohol as an acyl acceptor. J Mol Catal B Enzym 107:17–22. https://doi.org/10.1016/j.molcatb.2014.05.002 DOI