Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA

. 2021 Aug 03 ; 22 (15) : . [epub] 20210803

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34361115

Grantová podpora
679239 European Research Council - International
GA20-20152S Grantová Agentura České Republiky
APVV-18-0104 Agentúra na Podporu Výskumu a Vývoja
2/0001/21 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.

Zobrazit více v PubMed

Zhu D., Sorg J.A., Sun X. Clostridioides difficile biology: Sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell. Infect. Microbiol. 2018;8:1–10. doi: 10.3389/fcimb.2018.00029. PubMed DOI PMC

Guh A.Y., Mu Y., Winston L.G., Johnston H., Olson D., Farley M.M., Wilson L.E., Holzbauer S.M., Phipps E.C., Dumyati G.K., et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 2020;382:1320–1330. doi: 10.1056/NEJMoa1910215. PubMed DOI PMC

Marra A.R., Perencevich E.N., Nelson R.E., Samore M., Khader K., Chiang H.Y., Chorazy M.L., Herwaldt L.A., Diekema D.J., Kuxhausen M.F., et al. Incidence and outcomes associated with Clostridium difficile infections: A systematic review and meta-analysis. JAMA Netw. Open. 2020;3:e1917597. doi: 10.1001/jamanetworkopen.2019.17597. PubMed DOI PMC

Rhea S., Jones K., Endres-Dighe S., Munoz B., Weber D.J., Hilscher R., MacFarquhar J., Sickbert-Bennett E., DiBiase L., Marx A., et al. Modeling inpatient and outpatient antibiotic stewardship interventions to reduce the burden of Clostridioides difficile infection in a regional healthcare network. PLoS ONE. 2020;15:e0234031. doi: 10.1371/journal.pone.0234031. PubMed DOI PMC

Lessa F.C., Gould C.V., Clifford McDonald L. Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 2012;55:65–70. doi: 10.1093/cid/cis319. PubMed DOI PMC

Lessa F.C., Mu Y., Bamberg W.M., Beldavs Z.G., Dumyati G.K., Dunn J.R., Farley M.M., Holzbauer S.M., Meek J.I., Phipps E.C., et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015;372:825–834. doi: 10.1056/NEJMoa1408913. PubMed DOI PMC

Gamba P., Veening J.W., Saunders N.J., Hamoen L.W., Daniel R.A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 2009;191:4186–4194. doi: 10.1128/JB.01758-08. PubMed DOI PMC

Mukherjee A., Dai K., Lutkenhaus J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA. 1993;90:1053–1057. doi: 10.1073/pnas.90.3.1053. PubMed DOI PMC

De Boer P., Crossley R., Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature. 1992;359:254–256. doi: 10.1038/359254a0. PubMed DOI

Edwards D.H., Errington J. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 1997;24:905–915. doi: 10.1046/j.1365-2958.1997.3811764.x. PubMed DOI

Eswaramoorthy P., Erb M.L., Gregory J.A., Silverman J., Pogliano K., Pogliano J., Ramamurthi K.S. Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in Bacillus subtilis. MBio. 2011;2:e00257-11. doi: 10.1128/mBio.00257-11. PubMed DOI PMC

Marston A.L., Errington J. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 1999;33:84–96. doi: 10.1046/j.1365-2958.1999.01450.x. PubMed DOI

Bramkamp M., Emmins R., Weston L., Donovan C., Daniel R.A., Errington J. A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 2008;70:1556–1569. doi: 10.1111/j.1365-2958.2008.06501.x. PubMed DOI

Bramkamp M., van Baarle S. Division site selection in rod-shaped bacteria. Curr. Opin. Microbiol. 2009;12:683–688. doi: 10.1016/j.mib.2009.10.002. PubMed DOI

Patrick J.E., Kearns D.B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol. Microbiol. 2008;70:1166–1179. doi: 10.1111/j.1365-2958.2008.06469.x. PubMed DOI

Hammond L.R., White M.L., Eswara P.J. ¡vIVA la DivIVA! J. Bacteriol. 2019;201:e00245-19. doi: 10.1128/JB.00245-19. PubMed DOI PMC

Migocki M.D., Freeman M.K., Wake R.G., Harry E.J. The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis. EMBO Rep. 2002;3:1163–1167. doi: 10.1093/embo-reports/kvf233. PubMed DOI PMC

Rodrigues C.D.A., Harry E.J. The Min system and nucleoid occlusion are not required for identifying the division site in Bacillus subtilis but ensure its efficient utilization. PLoS Genet. 2012;8:e1002561. doi: 10.1371/journal.pgen.1002561. PubMed DOI PMC

Thomaides H.B., Freeman M., El Karoui M., Errington J. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev. 2001;15:1662–1673. doi: 10.1101/gad.197501. PubMed DOI PMC

Kaval K.G., Halbedel S. Architecturally the same, but playing a different game: The diverse species-specific roles of DivIVA proteins. Virulence. 2012;3:406–408. doi: 10.4161/viru.20747. PubMed DOI PMC

Dos Santos V.T., Bisson-Filho A.W., Gueiros-Filho F.J. DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. J. Bacteriol. 2012;194:3661–3669. doi: 10.1128/JB.05879-11. PubMed DOI PMC

Ben-Yehuda S., Rudner D.Z., Losick R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science. 2003;299:532–536. doi: 10.1126/science.1079914. PubMed DOI

Van Baarle S., Celik I.N., Kaval K.G., Bramkamp M., Hamoen L.W., Halbedel S. Protein-protein interaction domains of Bacillus subtilis DivIVA. J. Bacteriol. 2013;195:1012–1021. doi: 10.1128/JB.02171-12. PubMed DOI PMC

Briley K., Prepiak P., Dias M.J., Hahn J., Dubnau D. Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol. Microbiol. 2011;81:23–39. doi: 10.1111/j.1365-2958.2011.07695.x. PubMed DOI PMC

Cha J.H., Stewart G.C. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 1997;179:1671–1683. doi: 10.1128/jb.179.5.1671-1683.1997. PubMed DOI PMC

Eswaramoorthy P., Winter P.W., Wawrzusin P., York A.G., Shroff H., Ramamurthi K.S. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLoS Genet. 2014;10:e1004526. doi: 10.1371/journal.pgen.1004526. PubMed DOI PMC

Kang C.M., Nyayapathy S., Lee J.Y., Suh J.W., Husson R.N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology. 2008;154:725–735. doi: 10.1099/mic.0.2007/014076-0. PubMed DOI

Ramos A., Honrubia M.P., Valbuena N., Vaquera J., Mateos L.M., Gil J.A. Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology. 2003;149:3531–3542. doi: 10.1099/mic.0.26653-0. PubMed DOI

Nguyen L., Scherr N., Gatfield J., Walburger A., Pieters J., Thompson C.J. Antigen 84, an effector of pleiomorphism in Mycobactenum smegmatis. J. Bacteriol. 2007;189:7896–7910. doi: 10.1128/JB.00726-07. PubMed DOI PMC

Flärdh K. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2) Mol. Microbiol. 2003;49:1523–1536. doi: 10.1046/j.1365-2958.2003.03660.x. PubMed DOI

Makroczyová J., Jamroškovič J., Krascsenitsová E., Labajová N., Barák I. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis. Microbiol. Open. 2016;5:387–401. doi: 10.1002/mbo3.337. PubMed DOI PMC

Rowlett V.W., Margolin W. The bacterial Min system. Curr. Biol. 2013;23:R553–R556. doi: 10.1016/j.cub.2013.05.024. PubMed DOI

Jamroškovič J., Pavlendová N., Muchová K., Wilkinson A.J., Barák I. An oscillating Min system in Bacillus subtilis influences asymmetrical septation during sporulation. Microbiology. 2012;158:1972–1981. doi: 10.1099/mic.0.059295-0. PubMed DOI PMC

Valenčíková R., Krascsenitsová E., Labajová N., Makroczyová J., Barák I. Clostridial DivIVA and MinD interact in the absence of MinJ. Anaerobe. 2018;50:22–31. doi: 10.1016/j.anaerobe.2018.01.013. PubMed DOI

Lenarcic R., Halbedel S., Visser L., Shaw M., Wu L.J., Errington J., Marenduzzo D., Hamoen L.W. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 2009;28:2272–2282. doi: 10.1038/emboj.2009.129. PubMed DOI PMC

Ramamurthi K.S., Losick R. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc. Natl. Acad. Sci. USA. 2009;106:13541–13545. doi: 10.1073/pnas.0906851106. PubMed DOI PMC

Jurásek M., Flärdh K., Vácha R. Effect of membrane composition on DivIVA-membrane interaction. Biochim. Biophys. Acta BBA Biomembr. 2019;1862:183144. doi: 10.1016/j.bbamem.2019.183144. PubMed DOI

Oliva M., Halbedel S., Freund S.M., Dutow P., Leonard T.A., Veprintsev D.B., Hamoen L.W., Löwe J. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J. 2010;29:1988–2001. doi: 10.1038/emboj.2010.99. PubMed DOI PMC

Vecchiarelli A.G., Li M., Mizuuchi M., Mizuuchi K. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Mol. Microbiol. 2014;93:453–463. doi: 10.1111/mmi.12669. PubMed DOI PMC

Ramm B., Glock P., Schwille P. In vitro reconstitution of self-organizing protein patterns on supported lipid bilayers. J. Vis. Exp. 2018;2018:1–13. doi: 10.3791/58139. PubMed DOI PMC

Guan Z., Katzianerb D., Zhub J., Goldfine H. Clostridium difficile contains plasmalogen species of phospholipids and glycolipids. Biochim. Biophys. Acta. 2014;1842:1353–1359. doi: 10.1016/j.bbalip.2014.06.011. PubMed DOI PMC

Reviakine I., Johannsmann D., Richter R.P. Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 2011;83:8838–8848. doi: 10.1021/ac201778h. PubMed DOI

Dixon M.C. Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 2008;19:151–158. PubMed PMC

De Kerchove A.J., Elimelech M. Structural growth and viscoelastic properties of adsorbed alginate layers in monovalent and divalent salts. Macromolecules. 2006;39:6558–6564. doi: 10.1021/ma0527606. DOI

Renner L.D., Weibel D.B. MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J. Biol. Chem. 2012;287:38835–38844. doi: 10.1074/jbc.M112.407817. PubMed DOI PMC

Huang X., Bai Q., Hu J., Hou D. A practical model of quartz crystal microbalance in actual applications. Sensors. 2017;17:1785. doi: 10.3390/s17081785. PubMed DOI PMC

Lozeau L.D., Rolle M.W., Camesano T.A. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Colloids Surf. B Biointerfaces. 2018;167:229–238. doi: 10.1016/j.colsurfb.2018.04.016. PubMed DOI

Kachel K., Asuncion-Punzalan E., London E. The location of fluorescence probes with charged groups in model membranes. Biochim. Biophys. Acta BBA Biomembr. 1998;1374:63–76. doi: 10.1016/S0005-2736(98)00126-6. PubMed DOI

McMahon H.T., Boucrot E. Membrane curvature at a glance. J. Cell Sci. 2015;128:1065–1070. doi: 10.1242/jcs.114454. PubMed DOI PMC

Huang K.C., Ramamurthi K.S. Macromolecules that prefer their membranes curvy: MicroReview. Mol. Microbiol. 2010;76:822–832. doi: 10.1111/j.1365-2958.2010.07168.x. PubMed DOI PMC

Beltrán-Heredia E., Tsai F.C., Salinas-Almaguer S., Cao F.J., Bassereau P., Monroy F. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2019;2:1–7. doi: 10.1038/s42003-019-0471-x. PubMed DOI PMC

Kusaka J., Shuto S., Imai Y., Ishikawa K., Saito T., Natori K., Matsuoka S., Hara H., Matsumoto K. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res. Microbiol. 2016;167:202–214. doi: 10.1016/j.resmic.2015.11.004. PubMed DOI

Kawai F., Shoda M., Harashima R., Sadaie Y., Hara H., Matsumoto K. Cardiolipin domains in Bacillus subtilis Marburg membranes. J. Bacteriol. 2004;186:1475–1483. doi: 10.1128/JB.186.5.1475-1483.2004. PubMed DOI PMC

Mileykovskaya E., Dowhan W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 2000;182:1172–1175. doi: 10.1128/JB.182.4.1172-1175.2000. PubMed DOI PMC

Pogmore A., Seistrup K.H., Strahl H. The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains Growth conditions. Microbiology. 2018;164:475–482. doi: 10.1099/mic.0.000639. PubMed DOI

Koppelman C.M., Den Blaauwen T., Duursma M.C., Heeren R.M.A., Nanninga N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol. 2001;183:6144–6147. doi: 10.1128/JB.183.20.6144-6147.2001. PubMed DOI PMC

Kawai F., Hara H., Takamatsu H., Watabe K., Matsumoto K. Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet. Syst. 2006;81:69–76. doi: 10.1266/ggs.81.69. PubMed DOI

Sambrook J., Green M.R. Molecular Cloning: A Laboratory Manual, III. Volume 1 Cold Spring Harbor Press; Cold Spring Harbor, NY, USA: 2001.

Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press; Cold Spring Harbor, NY, USA: 1989.

Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Current Protocols in Molecular Biology. Volume 1–2 John Wiley & Sons Inc.; Hoboken, NJ, USA: 1988.

Bendezú F.O., De Boer P.A.J. Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J. Bacteriol. 2008;190:1792–1811. doi: 10.1128/JB.01322-07. PubMed DOI PMC

Stahlberg H., Kutejová E., Muchová K., Gregorini M., Lustig A., Müller S.A., Olivieri V., Engel A., Wilkinson A.J., Barák I. Oligomeric structure of the Bacillus subtilis cell division protien DivIVA determined by transmission microscopy. Mol. Microbiol. 2004;52:1281–1290. doi: 10.1111/j.1365-2958.2004.04074.x. PubMed DOI

Rodahl M., Höök F., Krozer A., Brzezinski P., Kasemo B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 1995;66:3924–3930. doi: 10.1063/1.1145396. DOI

Keller C.A., Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 1998;75:1397–1402. doi: 10.1016/S0006-3495(98)74057-3. PubMed DOI PMC

Richter R., Mukhopadhyay A., Brisson A. Pathways of Lipid Vesicle Deposition on Solid Surfaces: A Combined QCM-D and AFM Study. Biophys. J. 2003;85:3035–3047. doi: 10.1016/S0006-3495(03)74722-5. PubMed DOI PMC

Loose M., Fischer-Friedrich E., Ries J., Kruse K., Schwille P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science. 2008;320:789–792. doi: 10.1126/science.1154413. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T.G., Bertoni M., Bordoli L., et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:252–258. doi: 10.1093/nar/gku340. PubMed DOI PMC

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Best R.B., Zhu X., Shim J., Lopes P.E.M., Mittal J., Feig M., MacKerell A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1983;52:255–268. doi: 10.1080/00268978400101201. DOI

Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695. doi: 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Jo S., Lim J.B., Klauda J.B., Im W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009;97:50–58. doi: 10.1016/j.bpj.2009.04.013. PubMed DOI PMC

Wu E.L., Cheng X., Jo S., Rui H., Song K.C., Dávila-Contreras E.M., Qi Y., Lee J., Monje-Galvan V., Venable R.M., et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014;35:1997–2004. doi: 10.1002/jcc.23702. PubMed DOI PMC

Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Jo S., Kim T., Iyer V., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Grossfield A., Feller S.E., Pitman M.C. Convergence of molecular dynamics simulations of membrane proteins. Proteins Struct. Funct. Genet. 2007;67:31–40. doi: 10.1002/prot.21308. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...