Tissue architecture delineates field cancerization in BRAFV600E-induced tumor development
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34379110
PubMed Central
PMC8380047
DOI
10.1242/dmm.048887
PII: 271800
Knihovny.cz E-zdroje
- Klíčová slova
- Braf mutation, Cancer, Development, Oligoclonal, Oncogenic activation, Thyroid,
- MeSH
- bodová mutace MeSH
- inhibitory proteinkinas farmakologie MeSH
- mutace genetika MeSH
- myši MeSH
- nádorové mikroprostředí MeSH
- nádory štítné žlázy * genetika metabolismus patologie MeSH
- papilární karcinom štítné žlázy genetika patologie MeSH
- protinádorové látky * MeSH
- protoonkogenní proteiny B-Raf genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory proteinkinas MeSH
- protinádorové látky * MeSH
- protoonkogenní proteiny B-Raf MeSH
Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.
Department of Biosciences and Nutrition Karolinska Institute Huddinge SE 14183 Sweden
Department of Clinical Pathology Sahlgrenska University Hospital Göteborg SE 41345 Sweden
Department of Endocrinology University of Turku Åbo FI 20521 Finland
Division of Clinical Genetics Department of Laboratory Medicine Lund University Lund SE 22184 Sweden
Faculty of Medicine Charles University Hradec Kralove Czech Republic
Zobrazit více v PubMed
Afkhami, M., Karunamurthy, A., Chiosea, S., Nikiforova, M. N., Seethala, R., Nikiforov, Y. E. and Coyne, C. (2016). Histopathologic and clinical characterization of thyroid tumors carrying the BRAF(K601E) mutation. Thyroid 26, 242-247. 10.1089/thy.2015.0227 PubMed DOI
Antico-Arciuch, V. G., Dima, M., Liao, X.-H., Refetoff, S. and Di Cristofano, A. (2010). Cross-talk between PI3K and estrogen in the mouse thyroid predisposes to the development of follicular carcinomas with a higher incidence in females. Oncogene 29, 5678-5686. 10.1038/onc.2010.308 PubMed DOI PMC
Baker, A.-M., Huang, W., Wang, X.-M. M., Jansen, M., Ma, X.-J., Kim, J., Anderson, C. M., Wu, X., Pan, L., Su, N.et al. (2017). Robust RNA-based in situ mutation detection delineates colorectal cancer subclonal evolution. Nat. Commun. 8, 1998. 10.1038/s41467-017-02295-5 PubMed DOI PMC
Bissell, M. J. and Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320-329. 10.1038/nm.2328 PubMed DOI PMC
Bowling, S., Lawlor, K. and Rodriguez, T. A. (2019). Cell competition: the winners and losers of fitness selection. Development 146, dev167486. 10.1242/dev.167486 PubMed DOI
Cancer Genome Atlas Research Network. (2014). Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676-690. 10.1016/j.cell.2014.09.050 PubMed DOI PMC
Chakravarty, D., Santos, E., Ryder, M., Knauf, J. A., Liao, X.-H., West, B. L., Bollag, G., Kolesnick, R., Thin, T. H., Rosen, N.et al. (2011). Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700-4711. 10.1172/JCI46382 PubMed DOI PMC
Charles, R.-P., Iezza, G., Amendola, E., Dankort, D. and McMahon, M. (2011). Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res. 71, 3863-3871. 10.1158/0008-5472.CAN-10-4463 PubMed DOI PMC
Cheung, K. J., Padmanaban, V., Silvestri, V., Schipper, K., Cohen, J. D., Fairchild, A. N., Gorin, M. A., Verdone, J. E., Pienta, K. J., Bader, J. S.et al. (2016). Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl. Acad. Sci. USA 113, E854-E863. 10.1073/pnas.1508541113 PubMed DOI PMC
Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E. S. and Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213-219. 10.1038/nbt.2514 PubMed DOI PMC
Coclet, J., Foureau, F., Ketelbant, P., Galand, P. and Dumont, J. E. (1989). Cell population kinetics in dog and human adult thyroid. Clin. Endocrinol. 31, 655-666. 10.1111/j.1365-2265.1989.tb01290.x PubMed DOI
Dankort, D., Filenova, E., Collado, M., Serrano, M., Jones, K. and McMahon, M. (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379-384. 10.1101/gad.1516407 PubMed DOI PMC
de Biase, D., Cesari, V., Visani, M., Casadei, G. P., Cremonini, N., Gandolfi, G., Sancisi, V., Ragazzi, M., Pession, A., Ciarrocchi, A.et al. (2014). High-sensitivity BRAF mutation analysis: BRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 99, E1530-E1538. 10.1210/jc.2013-4389 PubMed DOI
Derwahl, M. and Nicula, D. (2014). Estrogen and its role in thyroid cancer. Endocr Relat. Cancer 21, T273-T283. 10.1530/ERC-14-0053 PubMed DOI
Dralle, H., Machens, A., Basa, J., Fatourechi, V., Franceschi, S., Hay, I. D., Nikiforov, Y. E., Pacini, F., Pasieka, J. L. and Sherman, S. I. (2015). Follicular cell-derived thyroid cancer. Nat. Rev. Dis. Primers 1, 15077. 10.1038/nrdp.2015.77 PubMed DOI
Echeverria, G. V., Powell, E., Seth, S., Ge, Z., Carugo, A., Bristow, C., Peoples, M., Robinson, F., Qiu, H., Shao, J.et al. (2018). High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat. Commun. 9, 5079. 10.1038/s41467-018-07406-4 PubMed DOI PMC
Fernández, L. P., López-Márquez, A. and Santisteban, P. (2015). Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Endocrinol. 11, 29-42. 10.1038/nrendo.2014.186 PubMed DOI
Finkel, A., Liba, L., Simon, E., Bick, T., Prinz, E., Sabo, E., Ben-Izhak, O. and Hershkovitz, D. (2016). Subclonality for BRAF mutation in papillary thyroid carcinoma is associated with earlier disease stage. J. Clin. Endocrinol. Metab. 101, 1407-1413. 10.1210/jc.2015-4031 PubMed DOI
Franco, A. T., Malaguarnera, R., Refetoff, S., Liao, X.-H., Lundsmith, E., Kimura, S., Pritchard, C., Marais, R., Davies, T. F., Weinstein, L. S.et al. (2011). Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc. Natl. Acad. Sci. USA 108, 1615-1620. 10.1073/pnas.1015557108 PubMed DOI PMC
Fugazzola, L., Muzza, M., Pogliaghi, G. and Vitale, M. (2020). Intratumoral genetic heterogeneity in papillary thyroid cancer: occurrence and clinical significance. Cancers (Basel) 12, 383. 10.3390/cancers12020383 PubMed DOI PMC
Garcia, S. B., Novelli, M. and Wright, N. A. (2000). The clonal origin and clonal evolution of epithelial tumours. Int. J. Exp. Pathol. 81, 89-116. 10.1046/j.1365-2613.2000.00142.x PubMed DOI PMC
Gawade, S., Mayer, C., Hafen, K., Barthlott, T., Krenger, W. and Szinnai, G. (2016). Cell growth dynamics in embryonic and adult mouse thyroid revealed by a novel approach to detect thyroid gland subpopulations. Thyroid 26, 591-599. 10.1089/thy.2015.0523 PubMed DOI
Ghossein, R. A., Katabi, N. and Fagin, J. A. (2013). Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J. Clin. Endocrinol. Metab. 98, E1414-E1421. 10.1210/jc.2013-1408 PubMed DOI PMC
Giannini, R., Ugolini, C., Lupi, C., Proietti, A., Elisei, R., Salvatore, G., Berti, P., Materazzi, G., Miccoli, P., Santoro, M.et al. (2007). The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 92, 3511-3516. 10.1210/jc.2007-0594 PubMed DOI
Gopal, R. K., Kübler, K., Calvo, S. E., Polak, P., Livitz, D., Rosebrock, D., Sadow, P. M., Campbell, B., Donovan, S. E., Amin, S.et al. (2018). Widespread chromosomal losses and mitochondrial DNA Alterations as genetic drivers in hürthle cell carcinoma. Cancer Cell 34, 242-255.e245. 10.1016/j.ccell.2018.06.013 PubMed DOI PMC
Halberg, R. B. and Dove, W. F. (2007). Polyclonal tumors in the mammalian intestine: are interactions among multiple initiated clones necessary for tumor initiation, growth, and progression? Cell Cycle 6, 44-51. 10.4161/cc.6.1.3651 PubMed DOI PMC
Harach, H. R., Franssila, K. O. and Wasenius, V.-M. (1985). Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 56, 531-538. 10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3 PubMed DOI
Howell, G. M., Hodak, S. P. and Yip, L. (2013). RAS mutations in thyroid cancer. Oncologist 18, 926-932. 10.1634/theoncologist.2013-0072 PubMed DOI PMC
Ingeson-Carlsson, C. and Nilsson, M. (2013). Switching from MAPK-dependent to MAPK-independent repression of the sodium-iodide symporter in 2D and 3D cultured normal thyroid cells. Mol. Cell. Endocrinol. 381, 241-254. 10.1016/j.mce.2013.08.006 PubMed DOI
Jovanovic, L., Delahunt, B., McIver, B., Eberhardt, N. L. and Grebe, S. K. G. (2003). Thyroid gland clonality revisited: the embryonal patch size of the normal human thyroid gland is very large, suggesting X-chromosome inactivation tumor clonality studies of thyroid tumors have to be interpreted with caution. J. Clin. Endocrinol. Metab. 88, 3284-3291. 10.1210/jc.2002-021552 PubMed DOI
Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., Weinstock, G. M., Wilson, R. K. and Ding, L. (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283-2285. 10.1093/bioinformatics/btp373 PubMed DOI PMC
Kon, S., Ishibashi, K., Katoh, H., Kitamoto, S., Shirai, T., Tanaka, S., Kajita, M., Ishikawa, S., Yamauchi, H., Yako, Y.et al. (2017). Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nat. Cell Biol. 19, 530-541. 10.1038/ncb3509 PubMed DOI
Kopp, P., Kimura, E. T., Aeschimann, S., Oestreicher, M., Tobler, A., Fey, M. F. and Studer, H. (1994). Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J. Clin. Endocrinol. Metab. 79, 134-139. 10.1210/jcem.79.1.7517946 PubMed DOI
Landa, I. and Knauf, J. A. (2019). Mouse models as a tool for understanding progression in Braf(V600E)-driven thyroid cancers. Endocrinol. Metab. 34, 11-22. 10.3803/EnM.2019.34.1.11 PubMed DOI PMC
Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Liang, S., Johansson, E., Barila, G., Altschuler, D. L., Fagman, H. and Nilsson, M. (2018). A branching morphogenesis program governs embryonic growth of the thyroid gland. Development 145, dev146829. 10.1242/dev.146829 PubMed DOI PMC
Liu, J., Willet, S. G., Bankaitis, E. D., Xu, Y., Wright, C. V. E. and Gu, G. (2013). Non-parallel recombination limits Cre-LoxP-based reporters as precise indicators of conditional genetic manipulation. Genesis 51, 436-442. 10.1002/dvg.22384 PubMed DOI PMC
Lu, Z., Sheng, J., Zhang, Y., Deng, J., Li, Y., Lu, A., Zhang, J., Yu, H., Zhang, M., Xiong, Z.et al. (2016). Clonality analysis of multifocal papillary thyroid carcinoma by using genetic profiles. J. Pathol. 239, 72-83. 10.1002/path.4696 PubMed DOI PMC
Ma, D.-F., Sudo, K., Tezuka, H., Kondo, T., Nakazawa, T., Niu, D.-F., Kawasaki, T., Mochizuki, K., Yamane, T. and Katoh, R. (2010). Polyclonal origin of hormone-producing cell populations evaluated as a direct in situ demonstration in EGFP/BALB/C chimeric mice. J. Endocrinol. 207, 17-25. 10.1677/JOE-10-0184 PubMed DOI
Manley, N. R. and Capecchi, M. R. (1995). The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989-2003. 10.1242/dev.121.7.1989 PubMed DOI
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M.et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. 10.1101/gr.107524.110 PubMed DOI PMC
Mitsutake, N., Fukushima, T., Matsuse, M., Rogounovitch, T., Saenko, V., Uchino, S., Ito, M., Suzuki, K., Suzuki, S. and Yamashita, S. (2015). BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Sci. Rep. 5, 16976. 10.1038/srep16976 PubMed DOI PMC
Mizutani, K., Onda, M., Asaka, S., Akaishi, J., Miyamoto, S., Yoshida, A., Nagahama, M., Ito, K. and Emi, M. (2005). Overexpressed in anaplastic thyroid carcinoma-1 (OEATC-1) as a novel gene responsible for anaplastic thyroid carcinoma. Cancer 103, 1785-1790. 10.1002/cncr.20988 PubMed DOI
Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. and Luo, L. (2007). A global double-fluorescent Cre reporter mouse. Genesis 45, 593-605. 10.1002/dvg.20335 PubMed DOI
Nilsson, M. and Fagman, H. (2013). Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr. Top. Dev. Biol. 106, 123-170. 10.1016/B978-0-12-416021-7.00004-3 PubMed DOI
Nilsson, M. and Fagman, H. (2017). Development of the thyroid gland. Development 144, 2123-2140. 10.1242/dev.145615 PubMed DOI
Novelli, M., Cossu, A., Oukrif, D., Quaglia, A., Lakhani, S., Poulsom, R., Sasieni, P., Carta, P., Contini, M., Pasca, A.et al. (2003). X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl. Acad. Sci. USA 100, 3311-3314. 10.1073/pnas.0437825100 PubMed DOI PMC
Parsons, B. L. (2018). Multiclonal tumor origin: evidence and implications. Mutat. Res. 777, 1-18. 10.1016/j.mrrev.2018.05.001 PubMed DOI
Peter, H. J., Gerber, H., Studer, H. and Smeds, S. (1985). Pathogenesis of heterogeneity in human multinodular goiter. A study on growth and function of thyroid tissue transplanted onto nude mice. J. Clin. Invest. 76, 1992-2002. 10.1172/JCI112199 PubMed DOI PMC
Pratilas, C. A., Taylor, B. S., Ye, Q., Viale, A., Sander, C., Solit, D. B. and Rosen, N. (2009). (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. USA 106, 4519-4524. 10.1073/pnas.0900780106 PubMed DOI PMC
Rahbari, R., Zhang, L. and Kebebew, E. (2010). Thyroid cancer gender disparity. Future Oncol. 6, 1771-1779. 10.2217/fon.10.127 PubMed DOI PMC
Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. and Balmain, A. (2018). Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699-709. 10.1038/s41556-018-0109-0 PubMed DOI PMC
Ricarte-Filho, J. C., Ryder, M., Chitale, D. A., Rivera, M., Heguy, A., Ladanyi, M., Janakiraman, M., Solit, D., Knauf, J. A., Tuttle, R. M.et al. (2009). Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885-4893. 10.1158/0008-5472.CAN-09-0727 PubMed DOI PMC
Rorive, S., Eddafali, B., Fernandez, S., Decaestecker, C., André, S., Kaltner, H., Kuwabara, I., Liu, F.T., Gabius, H.J., Kiss, R.et al. (2002). Changes in galectin-7 and cytokeratin-19 expression during the progression of malignancy in thyroid tumors: diagnostic and biological implications. Mod, Pathol. 15, 1294-301. 10.1097/01.MP.0000037306.19083.28 PubMed DOI
Saad, A. G., Kumar, S., Ron, E., Lubin, J. H., Stanek, J., Bove, K. E. and Nikiforov, Y. E. (2006). Proliferative activity of human thyroid cells in various age groups and its correlation with the risk of thyroid cancer after radiation exposure. J. Clin. Endocrinol. Metab. 91, 2672-2677. 10.1210/jc.2006-0417 PubMed DOI
Sellitti, D. F. and Suzuki, K. (2014). Intrinsic regulation of thyroid function by thyroglobulin. Thyroid 24, 625-638. 10.1089/thy.2013.0344 PubMed DOI PMC
Shabana, W., Delange, F., Freson, M., Osteaux, M. and De Schepper, J. (2000). Prevalence of thyroid hemiagenesis: ultrasound screening in normal children. Eur. J. Pediatr. 159, 456-458. 10.1007/s004310051307 PubMed DOI
Shattuck, T. M., Westra, W. H., Ladenson, P. W. and Arnold, A. (2005). Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N. Engl. J. Med. 352, 2406-2412. 10.1056/NEJMoa044190 PubMed DOI
Shimamura, M., Nakahara, M., Orim, F., Kurashige, T., Mitsutake, N., Nakashima, M., Kondo, S., Yamada, M., Taguchi, R., Kimura, S.et al. (2013). Postnatal expression of BRAFV600E does not induce thyroid cancer in mouse models of thyroid papillary carcinoma. Endocrinology 154, 4423-4430. 10.1210/en.2013-1174 PubMed DOI
Shimamura, M., Shibusawa, N., Kurashige, T., Mussazhanova, Z., Matsuzaki, H., Nakashima, M., Yamada, M. and Nagayama, Y. (2018). Mouse models of sporadic thyroid cancer derived from BRAFV600E alone or in combination with PTEN haploinsufficiency under physiologic TSH levels. PLoS ONE 13, e0201365. 10.1371/journal.pone.0201365 PubMed DOI PMC
Smeds, S., Peter, H. J., Jortso, E., Gerber, H. and Studer, H. (1987). Naturally occurring clones of cells with high intrinsic proliferation potential within the follicular epithelium of mouse thyroids. Cancer Res. 47, 1646-1651. PubMed
Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70-71. 10.1038/5007 PubMed DOI
Studer, H., Forster, R., Conti, A., Kohler, H., Haeberli, A. and Engler, H. (1978). Transformation of normal follicles into thyrotropin-refractory “cold” follicles in the aging mouse thyroid gland. Endocrinology 102, 1576-1586. 10.1210/endo-102-5-1576 PubMed DOI
Studer, H., Peter, H. J. and Gerber, H. (1989). Natural heterogeneity of thyroid cells: the basis for understanding thyroid function and nodular goiter growth. Endocr. Rev. 10, 125-135. 10.1210/edrv-10-2-125 PubMed DOI
Swanton, C. (2012). Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875-4882. 10.1158/0008-5472.CAN-12-2217 PubMed DOI PMC
Thliveris, A. T., Schwefel, B., Clipson, L., Plesh, L., Zahm, C. D., Leystra, A. A., Washington, M. K., Sullivan, R., Deming, D. A., Newton, M. A.et al. (2013). Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc. Natl. Acad. Sci. USA 110, 11523-11528. 10.1073/pnas.1303064110 PubMed DOI PMC
Thomas, G. A., Williams, D. and Williams, E. D. (1989). The clonal origin of thyroid nodules and adenomas. Am. J. Pathol. 134, 141-147. PubMed PMC
Turajlic, S., Sottoriva, A., Graham, T. and Swanton, C. (2019). Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404-416. 10.1038/s41576-019-0114-6 PubMed DOI
Undeutsch, H., Löf, C., Offermanns, S. and Kero, J. (2014). A mouse model with tamoxifen-inducible thyrocyte-specific cre recombinase activity. Genesis 52, 333-340. 10.1002/dvg.22740 PubMed DOI
van der Heijden, M., Miedema, D. M., Waclaw, B., Veenstra, V. L., Lecca, M. C., Nijman, L. E., van Dijk, E., van Neerven, S. M., Lodestijn, S. C., Lenos, K. J.et al. (2019). Spatiotemporal regulation of clonogenicity in colorectal cancer xenografts. Proc. Natl. Acad. Sci. USA 116, 6140-6145. 10.1073/pnas.1813417116 PubMed DOI PMC
van Isselt, J. W., de Klerk, J. M. H., van Rijk, P. P., van Gils, A. P. G., Polman, L. J., Kamphuis, C., Meijer, R. and Beekman, F. J. (2003). Comparison of methods for thyroid volume estimation in patients with Graves’ disease. Eur. J. Nucl. Med. Mol. Imaging 30, 525-531. 10.1007/s00259-002-1101-1 PubMed DOI
Wang, K., Li, M. and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164. 10.1093/nar/gkq603 PubMed DOI PMC
Vermeulen, L., Morrissey, E., van der Heijden, M., Nicholson, A. M., Sottoriva, A., Buczacki, S., Kemp, R., Tavare, S. and Winton, D. J. (2013). Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995-998. 10.1126/science.1243148 PubMed DOI
Villacorte, M., Delmarcelle, A.-S., Lernoux, M., Bouquet, M., Lemoine, P., Bolsee, J., Umans, L., de Sousa Lopes, S. C., Van Der Smissen, P., Sasaki, T.et al. (2016). Thyroid follicle development requires Smad1/5- and endothelial cell-dependent basement membrane assembly. Development 143, 1958-1970. 10.1242/dev.134171 PubMed DOI PMC
Williams, D. (2008). Radiation carcinogenesis: lessons from Chernobyl. Oncogene 27 Suppl. 2, S9-S18. 10.1038/onc.2009.349 PubMed DOI
Williams, D. (2015). Thyroid growth and cancer. Eur Thyroid J 4, 164-173. 10.1159/000437263 PubMed DOI PMC
Xing, M. (2005). BRAF mutation in thyroid cancer. Endocr Relat. Cancer 12, 245-262. 10.1677/erc.1.0978 PubMed DOI
Yamashita, S. and Suzuki, S. (2013). Risk of thyroid cancer after the Fukushima nuclear power plant accident. Respir. Investig. 51, 128-133. 10.1016/j.resinv.2013.05.007 PubMed DOI
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. and Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 134. 10.1186/1471-2105-13-134 PubMed DOI PMC
Yeager, N., Klein-Szanto, A., Kimura, S. and Di Cristofano, A. (2007). Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res. 67, 959-966. 10.1158/0008-5472.CAN-06-3524 PubMed DOI
Zou, M., Baitei, E. Y., Al-Rijjal, R. A., Parhar, R. S., Al-Mohanna, F. A., Kimura, S., Pritchard, C., Binessa, H. A., Alzahrani, A. S., Al-Khalaf, H. H.et al. (2016). TSH overcomes Braf(V600E)-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene 35, 1909-1918. 10.1038/onc.2015.253 PubMed DOI PMC