Plasmacytoid Dendritic Cells in Patients with MGUS and Multiple Myeloma

. 2021 Aug 20 ; 10 (16) : . [epub] 20210820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34442012

Grantová podpora
15-32935A Ministerstvo Zdravotnictví Ceské Republiky
NV19-05-00410 Ministerstvo Zdravotnictví Ceské Republiky
No.CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund-Project ENOCH

BACKGROUND: Plasmacytoid dendritic cells (pDCs) play prominent roles in mediating innate and adaptive immune responses. However, it is unclear how pDCs contribute to the immunosuppressive tumor microenvironment described in multiple myeloma (MM). METHODS: Newly diagnosed myeloma patients (MM, n = 37) were analyzed to determine the pDC counts in comparison to peripheral blood (PB, n = 53) and bone marrow (BM, n = 10) samples of age-matched healthy donors (HD) using flow cytometry. Second, proliferation of myeloma tumor cells in the presence of freshly isolated pDCs was examined. Third, production of IFNα by pDCs co-cultured with MM cells was determined by intracellular staining. RESULTS: We found a highly significant reduction of circulating pDCs (p < 0.0001) and in bone marrow (p < 0.0001) of MM patients compared to HD. We also observed a significant decrease of pDCs (p = 0.004) in BM in patients with monoclonal gammopathy of undetermined significance (MGUS, n = 12). Importantly, we determined that pDCs promote proliferation specifically of MM cells and not the stromal cells and that pDCs secrete IFNα upon co-culture with MM tumor cells. CONCLUSIONS: Our results show altered pDC frequencies in the BM microenvironment in MGUS and MM patients at diagnosis. We showed the tumor-promoting function of pDCs that may mediate immune deficiencies affecting long-term disease control and treatment outcome.

Zobrazit více v PubMed

Colonna M., Trinchieri G., Liu Y.-J. Plasmacytoid Dendritic Cells in Immunity. Nat. Immunol. 2004;5:1219–1226. doi: 10.1038/ni1141. PubMed DOI

Dzionek A., Inagaki Y., Okawa K., Nagafune J., Röck J., Sohma Y., Winkels G., Zysk M., Yamaguchi Y., Schmitz J. Plasmacytoid Dendritic Cells: From Specific Surface Markers to Specific Cellular Functions. Hum. Immunol. 2002;63:1133–1148. doi: 10.1016/S0198-8859(02)00752-8. PubMed DOI

McKenna K., Beignon A.-S., Bhardwaj N. Plasmacytoid Dendritic Cells: Linking Innate and Adaptive Immunity. J. Virol. 2005;79:17–27. doi: 10.1128/JVI.79.1.17-27.2005. PubMed DOI PMC

Tel J., Schreibelt G., Sittig S.P., Mathan T.S.M., Buschow S.I., Cruz L.J., Lambeck A.J.A., Figdor C.G., de Vries I.J.M. Human Plasmacytoid Dendritic Cells Efficiently Cross-Present Exogenous Ags to CD8+ T Cells despite Lower Ag Uptake than Myeloid Dendritic Cell Subsets. Blood. 2013;121:459–467. doi: 10.1182/blood-2012-06-435644. PubMed DOI

Ogata M., Ito T., Shimamoto K., Nakanishi T., Satsutani N., Miyamoto R., Nomura S. Plasmacytoid Dendritic Cells Have a Cytokine-Producing Capacity to Enhance ICOS Ligand-Mediated IL-10 Production during T-Cell Priming. Int. Immunol. 2013;25:171–182. doi: 10.1093/intimm/dxs103. PubMed DOI

Gilliet M., Liu Y.-J. Generation of Human CD8 T Regulatory Cells by CD40 Ligand-Activated Plasmacytoid Dendritic Cells. J. Exp. Med. 2002;195:695–704. doi: 10.1084/jem.20011603. PubMed DOI PMC

Jego G., Palucka A.K., Blanck J.-P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity. 2003;19:225–234. doi: 10.1016/S1074-7613(03)00208-5. PubMed DOI

Poeck H., Wagner M., Battiany J., Rothenfusser S., Wellisch D., Hornung V., Jahrsdorfer B., Giese T., Endres S., Hartmann G. Plasmacytoid Dendritic Cells, Antigen, and CpG-C License Human B Cells for Plasma Cell Differentiation and Immunoglobulin Production in the Absence of T-Cell Help. Blood. 2004;103:3058–3064. doi: 10.1182/blood-2003-08-2972. PubMed DOI

Shaw J., Wang Y.-H., Ito T., Arima K., Liu Y.-J. Plasmacytoid Dendritic Cells Regulate B-Cell Growth and Differentiation via CD70. Blood. 2010;115:3051–3057. doi: 10.1182/blood-2009-08-239145. PubMed DOI PMC

Koucký V., Bouček J., Fialová A. Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers. 2019;11:470. doi: 10.3390/cancers11040470. PubMed DOI PMC

Vermi W., Soncini M., Melocchi L., Sozzani S., Facchetti F. Plasmacytoid Dendritic Cells and Cancer. J. Leukoc. Biol. 2011;90:681–690. doi: 10.1189/jlb.0411190. PubMed DOI

Treilleux I., Blay J.-Y., Bendriss-Vermare N., Ray-Coquard I., Bachelot T., Guastalla J.-P., Bremond A., Goddard S., Pin J.-J., Barthelemy-Dubois C., et al. Dendritic Cell Infiltration and Prognosis of Early Stage Breast Cancer. Clin. Cancer Res. 2004;10:7466–7474. doi: 10.1158/1078-0432.CCR-04-0684. PubMed DOI

Sisirak V., Faget J., Gobert M., Goutagny N., Vey N., Treilleux I., Renaudineau S., Poyet G., Labidi-Galy S.I., Goddard-Leon S., et al. Impaired IFN-α Production by Plasmacytoid Dendritic Cells Favors Regulatory T-Cell Expansion That May Contribute to Breast Cancer Progression. Cancer Res. 2012;72:5188–5197. doi: 10.1158/0008-5472.CAN-11-3468. PubMed DOI

Labidi-Galy S.I., Treilleux I., Goddard-Leon S., Combes J.-D., Blay J.-Y., Ray-Coquard I., Caux C., Bendriss-Vermare N. Plasmacytoid Dendritic Cells Infiltrating Ovarian Cancer Are Associated with Poor Prognosis. Oncoimmunology. 2012;1:380–382. doi: 10.4161/onci.18801. PubMed DOI PMC

Labidi-Galy S.I., Sisirak V., Meeus P., Gobert M., Treilleux I., Bajard A., Combes J.-D., Faget J., Mithieux F., Cassignol A., et al. Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer. Cancer Res. 2011;71:5423–5434. doi: 10.1158/0008-5472.CAN-11-0367. PubMed DOI

Aspord C., Leccia M.-T., Charles J., Plumas J. Plasmacytoid Dendritic Cells Support Melanoma Progression by Promoting Th2 and Regulatory Immunity through OX40L and ICOSL. Cancer Immunol. Res. 2013;1:402–415. doi: 10.1158/2326-6066.CIR-13-0114-T. PubMed DOI

Huang X.-M., Liu X.-S., Lin X.-K., Yu H., Sun J.-Y., Liu X.-K., Chen C., Jin H.-L., Zhang G.-E., Shi X.-X., et al. Role of Plasmacytoid Dendritic Cells and Inducible Costimulator-Positive Regulatory T Cells in the Immunosuppression Microenvironment of Gastric Cancer. Cancer Sci. 2014;105:150–158. doi: 10.1111/cas.12327. PubMed DOI PMC

Kyle R.A., Rajkumar S.V. Multiple Myeloma. N. Engl. J. Med. 2004;351:1860–1873. doi: 10.1056/NEJMra041875. PubMed DOI

Brioli A., Melchor L., Walker B.A., Davies F.E., Morgan G.J. Biology and Treatment of Myeloma. Clin. Lymphoma Myeloma Leuk. 2014;14:S65–S70. doi: 10.1016/j.clml.2014.06.011. PubMed DOI

Yang L., Li A., Lei Q., Zhang Y. Tumor-Intrinsic Signaling Pathways: Key Roles in the Regulation of the Immunosuppressive Tumor Microenvironment. J. Hematol. Oncol. 2019;12:125. doi: 10.1186/s13045-019-0804-8. PubMed DOI PMC

Wellenstein M.D., de Visser K.E. Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity. 2018;48:399–416. doi: 10.1016/j.immuni.2018.03.004. PubMed DOI

Botta C., Mendicino F., Martino E.A., Vigna E., Ronchetti D., Correale P., Morabito F., Neri A., Gentile M. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers. 2021;13:3213. doi: 10.3390/cancers13133213. PubMed DOI PMC

Castella B., Foglietta M., Riganti C., Massaia M. Vγ9Vδ2 T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression. Front. Immunol. 2018;9:1492. doi: 10.3389/fimmu.2018.01492. PubMed DOI PMC

Jelinek T., Paiva B., Hajek R. Update on PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front. Immunol. 2018;9:2341. doi: 10.3389/fimmu.2018.02431. PubMed DOI PMC

Brimnes M.K., Svane I.M., Johnsen H.E. Impaired Functionality and Phenotypic Profile of Dendritic Cells from Patients with Multiple Myeloma. Clin. Exp. Immunol. 2006;144:76–84. doi: 10.1111/j.1365-2249.2006.03037.x. PubMed DOI PMC

Chauhan D., Singh A.V., Brahmandam M., Carrasco R., Bandi M., Hideshima T., Bianchi G., Podar K., Tai Y.-T., Mitsiades C., et al. Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Novel Therapeutic Target. Cancer Cell. 2009;16:309–323. doi: 10.1016/j.ccr.2009.08.019. PubMed DOI PMC

Kyle R.A., Therneau T.M., Rajkumar S.V., Offord J.R., Larson D.R., Plevak M.F., Melton L.J. A Long-Term Study of Prognosis in Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2002;346:564–569. doi: 10.1056/NEJMoa01133202. PubMed DOI

Kyle R.A., Therneau T.M., Rajkumar S.V., Larson D.R., Plevak M.F., Offord J.R., Dispenzieri A., Katzmann J.A., Melton L.J. Prevalence of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2006;354:1362–1369. doi: 10.1056/NEJMoa054494. PubMed DOI

Leone P., Berardi S., Frassanito M.A., Ria R., De Re V., Cicco S., Battaglia S., Ditonno P., Dammacco F., Vacca A., et al. Dendritic Cells Accumulate in the Bone Marrow of Myeloma Patients Where They Protect Tumor Plasma Cells from CD8+ T-Cell Killing. Blood. 2015;126:1443–1451. doi: 10.1182/blood-2015-01-623975. PubMed DOI PMC

Ray A., Tian Z., Das D.S., Coffman R.L., Richardson P., Chauhan D., Anderson K.C. A Novel TLR-9 Agonist C792 Inhibits Plasmacytoid Dendritic Cell-Induced Myeloma Cell Growth and Enhance Cytotoxicity of Bortezomib. Leukemia. 2014;28:1716–1724. doi: 10.1038/leu.2014.46. PubMed DOI PMC

Soliman A.M., Das S., Teoh S.L. Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int. J. Mol. Sci. 2021;22:7470. doi: 10.3390/ijms22147470. PubMed DOI PMC

Bi E., Li R., Bover L.C., Li H., Su P., Ma X., Huang C., Wang Q., Liu L., Yang M., et al. E-Cadherin Expression on Multiple Myeloma Cells Activates Tumor-Promoting Properties in Plasmacytoid DCs. J. Clin. Investig. 2018;128:4821–4831. doi: 10.1172/JCI121421. PubMed DOI PMC

Ray A., Das D.S., Song Y., Richardson P., Munshi N.C., Chauhan D., Anderson K.C. Targeting PD1-PDL1 Immune Checkpoint in Plasmacytoid Dendritic Cell Interactions with T Cells, Natural Killer Cells and Multiple Myeloma Cells. Leukemia. 2015;29:1441–1444. doi: 10.1038/leu.2015.11. PubMed DOI PMC

Palma G., De Laurenzi V., De Marco M., Barbieri A., Petrillo A., Turco M.C., Arra C. Plasmacytoids Dendritic Cells Are a Therapeutic Target in Anticancer Immunity. Biochim. Biophys. Acta (BBA) 2012;1826:407–414. doi: 10.1016/j.bbcan.2012.04.007. PubMed DOI

Musumeci A., Lutz K., Winheim E., Krug A.B. What Makes a PDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Front. Immunol. 2019;10:1222. doi: 10.3389/fimmu.2019.01222. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace