Plasmacytoid Dendritic Cells in Patients with MGUS and Multiple Myeloma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-32935A
Ministerstvo Zdravotnictví Ceské Republiky
NV19-05-00410
Ministerstvo Zdravotnictví Ceské Republiky
No.CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund-Project ENOCH
PubMed
34442012
PubMed Central
PMC8396926
DOI
10.3390/jcm10163717
PII: jcm10163717
Knihovny.cz E-zdroje
- Klíčová slova
- MGUS, immunosuppressive tumor microenvironment, multiple myeloma, plasmacytoid dendritic cells,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Plasmacytoid dendritic cells (pDCs) play prominent roles in mediating innate and adaptive immune responses. However, it is unclear how pDCs contribute to the immunosuppressive tumor microenvironment described in multiple myeloma (MM). METHODS: Newly diagnosed myeloma patients (MM, n = 37) were analyzed to determine the pDC counts in comparison to peripheral blood (PB, n = 53) and bone marrow (BM, n = 10) samples of age-matched healthy donors (HD) using flow cytometry. Second, proliferation of myeloma tumor cells in the presence of freshly isolated pDCs was examined. Third, production of IFNα by pDCs co-cultured with MM cells was determined by intracellular staining. RESULTS: We found a highly significant reduction of circulating pDCs (p < 0.0001) and in bone marrow (p < 0.0001) of MM patients compared to HD. We also observed a significant decrease of pDCs (p = 0.004) in BM in patients with monoclonal gammopathy of undetermined significance (MGUS, n = 12). Importantly, we determined that pDCs promote proliferation specifically of MM cells and not the stromal cells and that pDCs secrete IFNα upon co-culture with MM tumor cells. CONCLUSIONS: Our results show altered pDC frequencies in the BM microenvironment in MGUS and MM patients at diagnosis. We showed the tumor-promoting function of pDCs that may mediate immune deficiencies affecting long-term disease control and treatment outcome.
Department of Hemato Oncology University Hospital Ostrava 708 00 Ostrava Czech Republic
Department of Hematology University Hospital Brno 625 00 Brno Czech Republic
Faculty of Medicine University of Ostrava 701 03 Ostrava Czech Republic
Zobrazit více v PubMed
Colonna M., Trinchieri G., Liu Y.-J. Plasmacytoid Dendritic Cells in Immunity. Nat. Immunol. 2004;5:1219–1226. doi: 10.1038/ni1141. PubMed DOI
Dzionek A., Inagaki Y., Okawa K., Nagafune J., Röck J., Sohma Y., Winkels G., Zysk M., Yamaguchi Y., Schmitz J. Plasmacytoid Dendritic Cells: From Specific Surface Markers to Specific Cellular Functions. Hum. Immunol. 2002;63:1133–1148. doi: 10.1016/S0198-8859(02)00752-8. PubMed DOI
McKenna K., Beignon A.-S., Bhardwaj N. Plasmacytoid Dendritic Cells: Linking Innate and Adaptive Immunity. J. Virol. 2005;79:17–27. doi: 10.1128/JVI.79.1.17-27.2005. PubMed DOI PMC
Tel J., Schreibelt G., Sittig S.P., Mathan T.S.M., Buschow S.I., Cruz L.J., Lambeck A.J.A., Figdor C.G., de Vries I.J.M. Human Plasmacytoid Dendritic Cells Efficiently Cross-Present Exogenous Ags to CD8+ T Cells despite Lower Ag Uptake than Myeloid Dendritic Cell Subsets. Blood. 2013;121:459–467. doi: 10.1182/blood-2012-06-435644. PubMed DOI
Ogata M., Ito T., Shimamoto K., Nakanishi T., Satsutani N., Miyamoto R., Nomura S. Plasmacytoid Dendritic Cells Have a Cytokine-Producing Capacity to Enhance ICOS Ligand-Mediated IL-10 Production during T-Cell Priming. Int. Immunol. 2013;25:171–182. doi: 10.1093/intimm/dxs103. PubMed DOI
Gilliet M., Liu Y.-J. Generation of Human CD8 T Regulatory Cells by CD40 Ligand-Activated Plasmacytoid Dendritic Cells. J. Exp. Med. 2002;195:695–704. doi: 10.1084/jem.20011603. PubMed DOI PMC
Jego G., Palucka A.K., Blanck J.-P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity. 2003;19:225–234. doi: 10.1016/S1074-7613(03)00208-5. PubMed DOI
Poeck H., Wagner M., Battiany J., Rothenfusser S., Wellisch D., Hornung V., Jahrsdorfer B., Giese T., Endres S., Hartmann G. Plasmacytoid Dendritic Cells, Antigen, and CpG-C License Human B Cells for Plasma Cell Differentiation and Immunoglobulin Production in the Absence of T-Cell Help. Blood. 2004;103:3058–3064. doi: 10.1182/blood-2003-08-2972. PubMed DOI
Shaw J., Wang Y.-H., Ito T., Arima K., Liu Y.-J. Plasmacytoid Dendritic Cells Regulate B-Cell Growth and Differentiation via CD70. Blood. 2010;115:3051–3057. doi: 10.1182/blood-2009-08-239145. PubMed DOI PMC
Koucký V., Bouček J., Fialová A. Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers. 2019;11:470. doi: 10.3390/cancers11040470. PubMed DOI PMC
Vermi W., Soncini M., Melocchi L., Sozzani S., Facchetti F. Plasmacytoid Dendritic Cells and Cancer. J. Leukoc. Biol. 2011;90:681–690. doi: 10.1189/jlb.0411190. PubMed DOI
Treilleux I., Blay J.-Y., Bendriss-Vermare N., Ray-Coquard I., Bachelot T., Guastalla J.-P., Bremond A., Goddard S., Pin J.-J., Barthelemy-Dubois C., et al. Dendritic Cell Infiltration and Prognosis of Early Stage Breast Cancer. Clin. Cancer Res. 2004;10:7466–7474. doi: 10.1158/1078-0432.CCR-04-0684. PubMed DOI
Sisirak V., Faget J., Gobert M., Goutagny N., Vey N., Treilleux I., Renaudineau S., Poyet G., Labidi-Galy S.I., Goddard-Leon S., et al. Impaired IFN-α Production by Plasmacytoid Dendritic Cells Favors Regulatory T-Cell Expansion That May Contribute to Breast Cancer Progression. Cancer Res. 2012;72:5188–5197. doi: 10.1158/0008-5472.CAN-11-3468. PubMed DOI
Labidi-Galy S.I., Treilleux I., Goddard-Leon S., Combes J.-D., Blay J.-Y., Ray-Coquard I., Caux C., Bendriss-Vermare N. Plasmacytoid Dendritic Cells Infiltrating Ovarian Cancer Are Associated with Poor Prognosis. Oncoimmunology. 2012;1:380–382. doi: 10.4161/onci.18801. PubMed DOI PMC
Labidi-Galy S.I., Sisirak V., Meeus P., Gobert M., Treilleux I., Bajard A., Combes J.-D., Faget J., Mithieux F., Cassignol A., et al. Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer. Cancer Res. 2011;71:5423–5434. doi: 10.1158/0008-5472.CAN-11-0367. PubMed DOI
Aspord C., Leccia M.-T., Charles J., Plumas J. Plasmacytoid Dendritic Cells Support Melanoma Progression by Promoting Th2 and Regulatory Immunity through OX40L and ICOSL. Cancer Immunol. Res. 2013;1:402–415. doi: 10.1158/2326-6066.CIR-13-0114-T. PubMed DOI
Huang X.-M., Liu X.-S., Lin X.-K., Yu H., Sun J.-Y., Liu X.-K., Chen C., Jin H.-L., Zhang G.-E., Shi X.-X., et al. Role of Plasmacytoid Dendritic Cells and Inducible Costimulator-Positive Regulatory T Cells in the Immunosuppression Microenvironment of Gastric Cancer. Cancer Sci. 2014;105:150–158. doi: 10.1111/cas.12327. PubMed DOI PMC
Kyle R.A., Rajkumar S.V. Multiple Myeloma. N. Engl. J. Med. 2004;351:1860–1873. doi: 10.1056/NEJMra041875. PubMed DOI
Brioli A., Melchor L., Walker B.A., Davies F.E., Morgan G.J. Biology and Treatment of Myeloma. Clin. Lymphoma Myeloma Leuk. 2014;14:S65–S70. doi: 10.1016/j.clml.2014.06.011. PubMed DOI
Yang L., Li A., Lei Q., Zhang Y. Tumor-Intrinsic Signaling Pathways: Key Roles in the Regulation of the Immunosuppressive Tumor Microenvironment. J. Hematol. Oncol. 2019;12:125. doi: 10.1186/s13045-019-0804-8. PubMed DOI PMC
Wellenstein M.D., de Visser K.E. Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity. 2018;48:399–416. doi: 10.1016/j.immuni.2018.03.004. PubMed DOI
Botta C., Mendicino F., Martino E.A., Vigna E., Ronchetti D., Correale P., Morabito F., Neri A., Gentile M. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers. 2021;13:3213. doi: 10.3390/cancers13133213. PubMed DOI PMC
Castella B., Foglietta M., Riganti C., Massaia M. Vγ9Vδ2 T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression. Front. Immunol. 2018;9:1492. doi: 10.3389/fimmu.2018.01492. PubMed DOI PMC
Jelinek T., Paiva B., Hajek R. Update on PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front. Immunol. 2018;9:2341. doi: 10.3389/fimmu.2018.02431. PubMed DOI PMC
Brimnes M.K., Svane I.M., Johnsen H.E. Impaired Functionality and Phenotypic Profile of Dendritic Cells from Patients with Multiple Myeloma. Clin. Exp. Immunol. 2006;144:76–84. doi: 10.1111/j.1365-2249.2006.03037.x. PubMed DOI PMC
Chauhan D., Singh A.V., Brahmandam M., Carrasco R., Bandi M., Hideshima T., Bianchi G., Podar K., Tai Y.-T., Mitsiades C., et al. Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Novel Therapeutic Target. Cancer Cell. 2009;16:309–323. doi: 10.1016/j.ccr.2009.08.019. PubMed DOI PMC
Kyle R.A., Therneau T.M., Rajkumar S.V., Offord J.R., Larson D.R., Plevak M.F., Melton L.J. A Long-Term Study of Prognosis in Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2002;346:564–569. doi: 10.1056/NEJMoa01133202. PubMed DOI
Kyle R.A., Therneau T.M., Rajkumar S.V., Larson D.R., Plevak M.F., Offord J.R., Dispenzieri A., Katzmann J.A., Melton L.J. Prevalence of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2006;354:1362–1369. doi: 10.1056/NEJMoa054494. PubMed DOI
Leone P., Berardi S., Frassanito M.A., Ria R., De Re V., Cicco S., Battaglia S., Ditonno P., Dammacco F., Vacca A., et al. Dendritic Cells Accumulate in the Bone Marrow of Myeloma Patients Where They Protect Tumor Plasma Cells from CD8+ T-Cell Killing. Blood. 2015;126:1443–1451. doi: 10.1182/blood-2015-01-623975. PubMed DOI PMC
Ray A., Tian Z., Das D.S., Coffman R.L., Richardson P., Chauhan D., Anderson K.C. A Novel TLR-9 Agonist C792 Inhibits Plasmacytoid Dendritic Cell-Induced Myeloma Cell Growth and Enhance Cytotoxicity of Bortezomib. Leukemia. 2014;28:1716–1724. doi: 10.1038/leu.2014.46. PubMed DOI PMC
Soliman A.M., Das S., Teoh S.L. Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int. J. Mol. Sci. 2021;22:7470. doi: 10.3390/ijms22147470. PubMed DOI PMC
Bi E., Li R., Bover L.C., Li H., Su P., Ma X., Huang C., Wang Q., Liu L., Yang M., et al. E-Cadherin Expression on Multiple Myeloma Cells Activates Tumor-Promoting Properties in Plasmacytoid DCs. J. Clin. Investig. 2018;128:4821–4831. doi: 10.1172/JCI121421. PubMed DOI PMC
Ray A., Das D.S., Song Y., Richardson P., Munshi N.C., Chauhan D., Anderson K.C. Targeting PD1-PDL1 Immune Checkpoint in Plasmacytoid Dendritic Cell Interactions with T Cells, Natural Killer Cells and Multiple Myeloma Cells. Leukemia. 2015;29:1441–1444. doi: 10.1038/leu.2015.11. PubMed DOI PMC
Palma G., De Laurenzi V., De Marco M., Barbieri A., Petrillo A., Turco M.C., Arra C. Plasmacytoids Dendritic Cells Are a Therapeutic Target in Anticancer Immunity. Biochim. Biophys. Acta (BBA) 2012;1826:407–414. doi: 10.1016/j.bbcan.2012.04.007. PubMed DOI
Musumeci A., Lutz K., Winheim E., Krug A.B. What Makes a PDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Front. Immunol. 2019;10:1222. doi: 10.3389/fimmu.2019.01222. PubMed DOI PMC