Stress Effect of Food Matrices on Viability of Probiotic Cells during Model Digestion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34442704
PubMed Central
PMC8401621
DOI
10.3390/microorganisms9081625
PII: microorganisms9081625
Knihovny.cz E-zdroje
- Klíčová slova
- cell viability, food matrices, food stress, model digestion, probiotics,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to evaluate the influence of model (alcohol, sugar, salt, protein and acid) and real foods and beverages on the viability of probiotics during incubation and artificial digestion. Viability of monocultures Lactobacillus acidophilus CCM4833 and Bifidobacterium breve CCM7825T, and a commercial mixture of 9 probiotic bacterial strains, was tested by cultivation assay and flow cytometry. In model foods, the best viability was determined in the presence of 0.2 g/L glucose, 10% albumin and 10% ethanol. As the most suitable real food for probiotic survival, complex protein and carbohydrate substrates were found, such as beef broth, potato salad with pork, chicken with rice, chocolate spread, porridge and yoghurt. The best liquid was milk and meat broth, followed by Coca-Cola, beer and coffee. Viability of probiotics was higher when consumed with meals than with beverages only. Addition of prebiotics increased the viability of probiotics, especially in presence of instant and fast foods. Generally, the highest viability of probiotics during artificial digestion was observed in mixed culture in the presence of protein, sugar and fat, or their combination. The increase of cell viability observed in such foods during model digestion may further contribute to the positive effect of probiotics on human health.
Faculty of Chemistry Brno University of Technology Purkynova 118 61200 Brno Czech Republic
Pharmaceutical Biotechnology Ltd Slezska 949 32 12000 Prague Czech Republic
Zobrazit více v PubMed
Bruno L.M., Lima J.R., Wurlitzer N.R., Rodrigues T.C. Non-dairy cashew nut milk as a matrix to deliver probiotic bacteria. Food Sci. Technol. 2020;40:604–607. doi: 10.1590/fst.14219. DOI
Fiocco D., Longo A., Arena M.P., Russo P., Spano G., Capozzi V. How probiotics face food stress: They get by with a little help. Crit. Rev. Food Sci. Nutr. 2020;60:1552–1580. doi: 10.1080/10408398.2019.1580673. PubMed DOI
Yang H., Sun Y., Cai R., Chen Y., Gu B. The impact of dietary fiber and probiotics in infectious diseases. Microb. Pathogen. 2020;140:103931. doi: 10.1016/j.micpath.2019.103931. PubMed DOI
Do Espirito Santo A.P., Perego P., Converti A., Oliveira M.N. Influence of food matrices on probiotic viability—A review focusing on the fruity bases. Trends Food Sci. Technol. 2011;22:377–385. doi: 10.1016/j.tifs.2011.04.008. DOI
Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019;74:115–124. doi: 10.1159/000496426. PubMed DOI
George Kerry R., Patra J.K., Gouda S., Park Y., Shin H.S., Das G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018;26:927–939. doi: 10.1016/j.jfda.2018.01.002. PubMed DOI PMC
James A., Wang Y. Characterization, health benefits and applications of fruits and vegetable probiotics. CyTA J. Food. 2019;17:770–780. doi: 10.1080/19476337.2019.1652693. DOI
Terpou A., PapadakiI A., Lappa I.K., Kachrimanidou V., Bosnea L.A., Kopsahelis N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11:1591. doi: 10.3390/nu11071591. PubMed DOI PMC
Sanchez B., Delgado S., Blanco-Míquez A., Lourenco A., Gueimonde M., Margoless A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017;61:201600240. doi: 10.1002/mnfr.201600240. PubMed DOI
Rodrigues V.C.C., da Silva L.G.S., Simabuco F.M., Venema K., Antunes A.E.C. Survival, metabolic status and cellular morphology of probiotics in dairy products and dietary supplement after simulated digestion. J. Function. Foods. 2019;55:126–134. doi: 10.1016/j.jff.2019.01.046. DOI
Espitia P.J.P., Batista R.A., Azeredo H.M.C., Otoni C.G. Probiotics and their potential applications in active edible films and coatings. Food Res. Int. 2016;90:42–52. doi: 10.1016/j.foodres.2016.10.026. PubMed DOI
Mousavi Khaneghah A., Abhari K., Es I., Soares M.B., Oliveira R.B.H., Hedayat H., Rezaei M., Balthazar C.F., Silva R., Cruz A.G., et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci. Technol. 2020;95:205–218. doi: 10.1016/j.tifs.2019.11.022. DOI
Ranadheera R.D.C.S., Baines S.K., ADAMS M.C. Importance of food in probiotic efficacy. Food Res. Int. 2010;43:1–7. doi: 10.1016/j.foodres.2009.09.009. DOI
Markowiak P., Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021. PubMed DOI PMC
Guimaraes J.T., Balthazar C.F., Silva R., Esmerino E.A., Silva M.C., Sant’ Ana A.S., Freitas M.Q., Cruz A.G. Impact of probiotics and prebiotics on food texture. Curr. Opin. Food Sci. 2020;33:38–44. doi: 10.1016/j.cofs.2019.12.002. DOI
Cassani L., Gomez-Zavaglia A., Simal-Gandara J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Res. Int. 2020;129:108852. doi: 10.1016/j.foodres.2019.108852. PubMed DOI
Taverniti V., Koirala R., Dalla Via A., Gargari G., Leonardis E., Arioli S., Guglielmetti S. Effect of Cell Concentration on the persistence in the human intestine of four probiotic strains administered through a multispecies formulation. Nutrients. 2019;11:285. doi: 10.3390/nu11020285. PubMed DOI PMC
White J., Hekmat S. Development of probiotic fruit juices using Lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation. 2018;4:27. doi: 10.3390/fermentation4020027. DOI
Sagheddu V., Elli M., Lucido J., Biolchi C., Morelli L. Impact of mode of assumption and food matrix on-probiotic viability. J. Food Microbiol. 2018;2:1–6.
Shpri A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016;13:1–8.
Qamer S., Deshmukh M., Patole S. Probiotics for cow’s milk protein allergy: A systematic review of randomized controlled trials. Eur. J. Pediatr. 2019;178:1139–1149. doi: 10.1007/s00431-019-03397-6. PubMed DOI
Marova I., Parilova K., Friedl Z., Duronova K., Obruca S. Analysis of phenolic compounds in lager beers of different origin: A contribution to potential determination of the autenticity of Czech beer. Chromatographia. 2011;73:83–95. doi: 10.1007/s10337-011-1916-7. DOI
Gomand F., Borges F., Burgain J., Guerin J., Revol-Juneless A.M., Gaiani C. Food matrix design for effective lactic acid bacteria delivery. Ann. Rev. Food Sci. Technol. 2019;10:285–310. doi: 10.1146/annurev-food-032818-121140. PubMed DOI