• This record comes from PubMed

Synthesis of [13 C6 ]-ibrutinib

. 2021 Nov ; 64 (13) : 500-512. [epub] 20210920

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Convenient and straightforward synthesis of ibrutinib labeled by carbon-13 isotope is reported. Isotopically labeled building block is introduced in the last step of reaction sequence affording sufficient isolated yield (7%) of [13 C6 ]-ibrutinib calculated towards starting commercially available [13 C6 ]-bromobenzene.

See more in PubMed

Cameron F, Sanford M. Ibrutinib: first global approval. Drugs. 2014;74(2):263-271. https://doi.org/10.1007/s40265-014-0178-8

Burger J, Buggy J. Emerging drug profiles: Bruton tyrosine kinase (BTK) inhibitor ibrutinib (PCI-32765). Leuk Lymphoma. 2013;54(11):2385-2391.

Akinleye A, Chen Y, Mukhi N, Song Y, Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol. 2013;6(1):1-9. https://doi.org/10.1186/1756-8722-6-59

Rada M, Qusairy Z, Massip-Salcedo M, Macip S. Relevance of the Bruton tyrosine kinase as a target for COVID-19 therapy. Mol Cancer Res. 2020;19(25):549-555. https://doi.org/10.1158/1541-7786.mcr-20-0814

Hughes DL. Patent review of manufacturing routes to recently approved oncology drugs: ibrutinib, cobimetinib, and alectinib. Org Process Res Dev. 2016;20(11):1855-1869. https://doi.org/10.1021/acs.oprd.6b00304

Kaur V, Swami A. Ibrutinib in CLL: a focus on adverse events, resistance, and novel approaches beyond ibrutinib. Ann Hematol. 2017;96(7):1175-1184. https://doi.org/10.1007/s00277-017-2973-2

Kato K, Jingu S, Ogawa N, Higuchi S. Determination of pibutidine metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal. 2000;24(2):237-249. https://doi.org/10.1016/S0731-7085(00)00398-8

Wieling J. LC-MS-MS experiences with internal standards. Chromatographia. 2002;55(1):107-113. https://doi.org/10.1007/bf02493365

Chavez-Eng CM, Constanzer ML, Matuszewski BK. High-performance liquid chromatographic-tandem mass spectrometric evaluation and determination of stable isotope labeled analogs of rofecoxib in human plasma samples from oral bioavailability studies. J Chromatogr B Anal Technol Biomed Life Sci. 2002;767(1):117-129. https://doi.org/10.1016/S0378-4347(01)00552-7

Tung RD, Morgan AJ. Deuterated ibrutinib. US 9422295 B2, 2016.

Tung RD, Morgan AJ. Deuterated ibrutinib. WO 2014/022390 A1, 2014.

Tung RD, Morgan AJ. Deuterated ibrutinib. US 2015/0210699 A1, 2014.

Robins RK. Potential purine antagonists. I. Synthesis of some 4,6-substituted pyrazolo[3,4-d]pyrimidines. J. Am. Chem. Soc. 1955;78(1952):784-790.

Yin Y, Chen CJ, Yu RN, Shu L, Zhang TT, Zhang DY. Discovery of novel selective janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold. Bioorganic Med Chem. 2019;27(8):1562-1576. https://doi.org/10.1016/j.bmc.2019.02.054

Huafeng S, Yongzhu H, Chun L, Gaojun F. Method for preparing brutinib-D5 and application of ibrutinib in treating cancer. CN 2019-10350077, 2019.

de Vries R, Smit JW, Hellemans P, et al. Stable Isotope-Labelled Intravenous Microdose for Absolute Bioavailability and Effect of Grapefruit Juice on Ibrutinib in Healthy Adults. Br J Clin Pharmacol. 2016;81(2):235-245. https://doi.org/10.1111/bcp.12787

Moleele SS, Michael JP, De Koning CB. Methodology for the synthesis of 1,2-disubstituted arylnaphthalenes from α-tetralones. Tetrahedron. 2006;62(12):2831-2844. https://doi.org/10.1016/j.tet.2006.01.013

Zapf CW, Gerstenberger BS, Xing L, et al. Covalent inhibitors of interleukin-2 inducible T cell kinase (ItK) with nanomolar potency in a whole-blood assay. J Med Chem. 2012;55(22):10047-10063. https://doi.org/10.1021/jm301190s

Engel J, Smith S, Lategahn J, et al. Structure-guided development of covalent and mutant-selective pyrazolopyrimidines to target T790M drug resistance in epidermal growth factor receptor. J Med Chem. 2017;60(18):7725-7744. https://doi.org/10.1021/acs.jmedchem.7b00515

Li X, Wang A, Yu K, et al. Discovery of (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)Piperidin-1-yl)-2-(dimethylamino)ethanone (CHMFL-FLT3-122) as a potent and orally available FLT3 kinase inhibitor for FLT3-ITD positive acute myeloid leukemia. J Med Chem. 2015;58(24):9625-9638. https://doi.org/10.1021/acs.jmedchem.5b01611

Liu N, Hoogendoorn S, Van De Kar B, et al. Direct and two-step bioorthogonal probes for Bruton's tyrosine kinase based on ibrutinib: a comparative study. Org Biomol Chem. 2015;13(18):5147-5157. https://doi.org/10.1039/c5ob00474h

Haas PD, Steckel AH, Bellur Atici E, Al-Tundas R, Ozturk Aydin B, Secen H, Aydin BN. A process for preparation of 1H-pyrazolo[3,4-D] pyrimidine derivatvies. WO2020117135A1, 2020.

Maiti D, Buchwald SL. Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols. J am Chem Soc. 2009;131(47):17423-17429. https://doi.org/10.1021/ja9081815

Jeong Y, Lee J, Ryu JS. Design, synthesis, and evaluation of hinge-binder tethered 1,2,3-triazolylsalicylamide derivatives as aurora kinase inhibitors. Bioorganic Med. Chem. 2016;24(9):2114-2124. https://doi.org/10.1016/j.bmc.2016.03.042

Heydari A, Hosseini SE. Lithium perchlorate-catalyzed Boc protection of amines and amine derivatives. Adv Synth Catal. 2005;347(15):1929-1932. https://doi.org/10.1002/adsc.200505218

Greene TW, Wuts PGM. Protective groups in organic synthesis. 2nded. Willey; 2007 10.1002/9780470053485.ch2.

Li B, Li R, Dorff P, et al. Deprotection of N-Boc groups under continuous-flow high-temperature conditions. J Org Chem. 2019;84(8):4846-4855. https://doi.org/10.1021/acs.joc.8b02909

Kelly TA, McNeil DW. A simple method for the protection of aryl amines as their T-Butylcarbamoyl (Boc) derivatives. Tetrahedron Lett. 1994;35(48):9003-9006. https://doi.org/10.1016/0040-4039(94)88411-0

Wang J, Liang YL, Qu J. Boiling water-catalyzed neutral and selective N-Boc deprotection. Chem. Commun. 2009;34:5144-5146. https://doi.org/10.1039/b910239f

Tom NJ, Simon WM, Frost HN, Ewing M. Deprotection of a primary Boc group under basic conditions. Tetrahedron Lett. 2004;45(5):905-906. https://doi.org/10.1016/j.tetlet.2003.11.108

Amatore C, Jutand A, Leduc G. The triple role of fluoride ions in palladium-catalyzed Suzuki-Miyaura reactions: unprecedented transmetalation from [ArPdFL 2] complexes. Angew. Chemie - Int. Ed. 2012;51(6):1379-1382. https://doi.org/10.1002/anie.201107202

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...