Synthesis of [13 C6 ]-ibrutinib
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34478181
DOI
10.1002/jlcr.3944
Knihovny.cz E-resources
- Keywords
- [13C6]-ibrutinib, carbon-13, cost-effective synthesis, stable isotope labeling,
- MeSH
- Adenine analogs & derivatives chemistry MeSH
- Bromobenzenes chemistry MeSH
- Protein Kinase Inhibitors chemistry MeSH
- Carbon Isotopes chemistry MeSH
- Piperidines chemistry MeSH
- Chemistry Techniques, Synthetic methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenine MeSH
- Bromobenzenes MeSH
- bromobenzene MeSH Browser
- ibrutinib MeSH Browser
- Protein Kinase Inhibitors MeSH
- Carbon Isotopes MeSH
- Piperidines MeSH
Convenient and straightforward synthesis of ibrutinib labeled by carbon-13 isotope is reported. Isotopically labeled building block is introduced in the last step of reaction sequence affording sufficient isolated yield (7%) of [13 C6 ]-ibrutinib calculated towards starting commercially available [13 C6 ]-bromobenzene.
Faculty of Medicine in Hradec Kralove Charles University Hradec Kralove Czech Republic
Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Cameron F, Sanford M. Ibrutinib: first global approval. Drugs. 2014;74(2):263-271. https://doi.org/10.1007/s40265-014-0178-8
Burger J, Buggy J. Emerging drug profiles: Bruton tyrosine kinase (BTK) inhibitor ibrutinib (PCI-32765). Leuk Lymphoma. 2013;54(11):2385-2391.
Akinleye A, Chen Y, Mukhi N, Song Y, Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol. 2013;6(1):1-9. https://doi.org/10.1186/1756-8722-6-59
Rada M, Qusairy Z, Massip-Salcedo M, Macip S. Relevance of the Bruton tyrosine kinase as a target for COVID-19 therapy. Mol Cancer Res. 2020;19(25):549-555. https://doi.org/10.1158/1541-7786.mcr-20-0814
Hughes DL. Patent review of manufacturing routes to recently approved oncology drugs: ibrutinib, cobimetinib, and alectinib. Org Process Res Dev. 2016;20(11):1855-1869. https://doi.org/10.1021/acs.oprd.6b00304
Kaur V, Swami A. Ibrutinib in CLL: a focus on adverse events, resistance, and novel approaches beyond ibrutinib. Ann Hematol. 2017;96(7):1175-1184. https://doi.org/10.1007/s00277-017-2973-2
Kato K, Jingu S, Ogawa N, Higuchi S. Determination of pibutidine metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal. 2000;24(2):237-249. https://doi.org/10.1016/S0731-7085(00)00398-8
Wieling J. LC-MS-MS experiences with internal standards. Chromatographia. 2002;55(1):107-113. https://doi.org/10.1007/bf02493365
Chavez-Eng CM, Constanzer ML, Matuszewski BK. High-performance liquid chromatographic-tandem mass spectrometric evaluation and determination of stable isotope labeled analogs of rofecoxib in human plasma samples from oral bioavailability studies. J Chromatogr B Anal Technol Biomed Life Sci. 2002;767(1):117-129. https://doi.org/10.1016/S0378-4347(01)00552-7
Tung RD, Morgan AJ. Deuterated ibrutinib. US 9422295 B2, 2016.
Tung RD, Morgan AJ. Deuterated ibrutinib. WO 2014/022390 A1, 2014.
Tung RD, Morgan AJ. Deuterated ibrutinib. US 2015/0210699 A1, 2014.
Robins RK. Potential purine antagonists. I. Synthesis of some 4,6-substituted pyrazolo[3,4-d]pyrimidines. J. Am. Chem. Soc. 1955;78(1952):784-790.
Yin Y, Chen CJ, Yu RN, Shu L, Zhang TT, Zhang DY. Discovery of novel selective janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold. Bioorganic Med Chem. 2019;27(8):1562-1576. https://doi.org/10.1016/j.bmc.2019.02.054
Huafeng S, Yongzhu H, Chun L, Gaojun F. Method for preparing brutinib-D5 and application of ibrutinib in treating cancer. CN 2019-10350077, 2019.
de Vries R, Smit JW, Hellemans P, et al. Stable Isotope-Labelled Intravenous Microdose for Absolute Bioavailability and Effect of Grapefruit Juice on Ibrutinib in Healthy Adults. Br J Clin Pharmacol. 2016;81(2):235-245. https://doi.org/10.1111/bcp.12787
Moleele SS, Michael JP, De Koning CB. Methodology for the synthesis of 1,2-disubstituted arylnaphthalenes from α-tetralones. Tetrahedron. 2006;62(12):2831-2844. https://doi.org/10.1016/j.tet.2006.01.013
Zapf CW, Gerstenberger BS, Xing L, et al. Covalent inhibitors of interleukin-2 inducible T cell kinase (ItK) with nanomolar potency in a whole-blood assay. J Med Chem. 2012;55(22):10047-10063. https://doi.org/10.1021/jm301190s
Engel J, Smith S, Lategahn J, et al. Structure-guided development of covalent and mutant-selective pyrazolopyrimidines to target T790M drug resistance in epidermal growth factor receptor. J Med Chem. 2017;60(18):7725-7744. https://doi.org/10.1021/acs.jmedchem.7b00515
Li X, Wang A, Yu K, et al. Discovery of (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)Piperidin-1-yl)-2-(dimethylamino)ethanone (CHMFL-FLT3-122) as a potent and orally available FLT3 kinase inhibitor for FLT3-ITD positive acute myeloid leukemia. J Med Chem. 2015;58(24):9625-9638. https://doi.org/10.1021/acs.jmedchem.5b01611
Liu N, Hoogendoorn S, Van De Kar B, et al. Direct and two-step bioorthogonal probes for Bruton's tyrosine kinase based on ibrutinib: a comparative study. Org Biomol Chem. 2015;13(18):5147-5157. https://doi.org/10.1039/c5ob00474h
Haas PD, Steckel AH, Bellur Atici E, Al-Tundas R, Ozturk Aydin B, Secen H, Aydin BN. A process for preparation of 1H-pyrazolo[3,4-D] pyrimidine derivatvies. WO2020117135A1, 2020.
Maiti D, Buchwald SL. Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols. J am Chem Soc. 2009;131(47):17423-17429. https://doi.org/10.1021/ja9081815
Jeong Y, Lee J, Ryu JS. Design, synthesis, and evaluation of hinge-binder tethered 1,2,3-triazolylsalicylamide derivatives as aurora kinase inhibitors. Bioorganic Med. Chem. 2016;24(9):2114-2124. https://doi.org/10.1016/j.bmc.2016.03.042
Heydari A, Hosseini SE. Lithium perchlorate-catalyzed Boc protection of amines and amine derivatives. Adv Synth Catal. 2005;347(15):1929-1932. https://doi.org/10.1002/adsc.200505218
Greene TW, Wuts PGM. Protective groups in organic synthesis. 2nded. Willey; 2007 10.1002/9780470053485.ch2.
Li B, Li R, Dorff P, et al. Deprotection of N-Boc groups under continuous-flow high-temperature conditions. J Org Chem. 2019;84(8):4846-4855. https://doi.org/10.1021/acs.joc.8b02909
Kelly TA, McNeil DW. A simple method for the protection of aryl amines as their T-Butylcarbamoyl (Boc) derivatives. Tetrahedron Lett. 1994;35(48):9003-9006. https://doi.org/10.1016/0040-4039(94)88411-0
Wang J, Liang YL, Qu J. Boiling water-catalyzed neutral and selective N-Boc deprotection. Chem. Commun. 2009;34:5144-5146. https://doi.org/10.1039/b910239f
Tom NJ, Simon WM, Frost HN, Ewing M. Deprotection of a primary Boc group under basic conditions. Tetrahedron Lett. 2004;45(5):905-906. https://doi.org/10.1016/j.tetlet.2003.11.108
Amatore C, Jutand A, Leduc G. The triple role of fluoride ions in palladium-catalyzed Suzuki-Miyaura reactions: unprecedented transmetalation from [ArPdFL 2] complexes. Angew. Chemie - Int. Ed. 2012;51(6):1379-1382. https://doi.org/10.1002/anie.201107202