Pharmacokinetic, pharmacodynamic, and behavioural studies of deschloroketamine in Wistar rats

. 2022 Jan ; 179 (1) : 65-83. [epub] 20211031

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34519023

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.

Erratum v

PubMed

Zobrazit více v PubMed

Abdrachmanova, G., Teisinger, J., & Vyklicky, L. (2002). Axotomy-induced changes in the properties of NMDA receptor channels in rat spinal cord motoneurons. Journal of Physiology (London), 538, 53-63. https://doi.org/10.1113/jphysiol.2001.012794

Acquas, E., Carboni, E., Leone, P., & Dichiara, G. (1989). Sch 23390 blocks drug-conditioned place-preference and place-aversion-Anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade. Psychopharmacology, 99, 151-155. https://doi.org/10.1007/BF00442800

Adla, S. K., Slavikova, B., Chodounska, H., Vyklicky, V., Ladislav, M., Hubalkova, P., Krausova, B., Smejkalova, T., Nekardova, M., Smidkova, M., Monincova, L., Soucek, R., Vyklicky, L., & Kudova, E. (2018). Strong inhibitory effect, low cytotoxicity and high plasma stability of steroidal inhibitors of N-methyl-d-aspartate receptors with C-3 amide structural motif. Frontiers in Pharmacology, 9, 1299. https://doi.org/10.3389/fphar.2018.01299

Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., & Pawson, A. J. (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176, S21-S141.

Berry, J. N., Neugebauer, N. M., & Bardo, M. T. (2012). Reinstatement of methamphetamine conditioned place preference in nicotine-sensitized rats. Behavioural Brain Research, 235, 158-165. https://doi.org/10.1016/j.bbr.2012.07.043

Botanas, C. J., de la Pena, J. B., Dela Pena, I. J., Tampus, R., Yoon, R., Kim, H. J., Lee, Y. S., Jang, C. G., & Cheong, J. H. (2015). Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: Evidence of its abuse potential. Pharmacology Biochemistry and Behavior, 133, 31-36. https://doi.org/10.1016/j.pbb.2015.03.007

Bubenikova, V., Votava, M., Horacek, J., Palenicek, T., & Dockery, C. (2005). The effect of zotepine, risperidone, clozapine and olanzapine on MK-801-disrupted sensorimotor gating. Pharmacology Biochemistry and Behavior, 80, 591-596. https://doi.org/10.1016/j.pbb.2005.01.012

Can, A., Zanos, P., Moaddel, R., Kang, H. J., Dossou, K. S. S., Wainer, I. W., Cheer, J. F., Frost, D. O., Huang, X. P., & Gould, T. D. (2016). Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters. The Journal of Pharmacology and Experimental Therapeutics, 359, 159-170. https://doi.org/10.1124/jpet.116.235838

Carrier, N., & Kabbaj, M. (2013). Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology, 70, 27-34. https://doi.org/10.1016/j.neuropharm.2012.12.009

Chang, L. J., Zhang, K., Pu, Y. Y., Qu, Y. G., Wang, S. M., Xiong, Z. W., Ren, Q., Dong, C., Fujita, Y., & Hashimoto, K. (2019). Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacology Biochemistry and Behavior, 181, 53-59. https://doi.org/10.1016/j.pbb.2019.04.008

Cunningham, C. L., Gremel, C. M., & Groblewski, P. A. (2006). Drug-induced conditioned place preference and aversion in mice. Nature Protocols, 1, 1662-1670. https://doi.org/10.1038/nprot.2006.279

Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987-993. https://doi.org/10.1111/bph.14153

de Bruin, N. M. W. J., Ellenbroek, B. A., Cools, A. R., Coenen, A. M. L., & van Luijtelaar, E. L. J. M. (1999). Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology, 142, 9-17. https://doi.org/10.1007/s002130050856

Frison, G., Zamengo, L., Zancanaro, F., Tisato, F., & Traldi, P. (2016). Characterization of the designer drug deschloroketamine (2-methylamino-2-phenylcyclohexanone) by gas chromatography/mass spectrometry, liquid chromatography/high-resolution mass spectrometry, multistage mass spectrometry, and nuclear magnetic resonance. Rapid Communications in Mass Spectrometry, 30, 151-160. https://doi.org/10.1002/rcm.7425

Fujakova, M., Palenicek, T., Brunovsky, M., Gorman, I., Tyls, F., Kubešová, A., Řípová, D., Krajča, V., & Horáček, J. (2014). The effect of (−)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis. Pharmacology Biochemistry and Behavior, 122, 212-221. https://doi.org/10.1016/j.pbb.2014.03.001

Fukumoto, K., Toki, H., Iijima, M., Hashihayata, T., Yamaguchi, J., Hashimoto, K., & Chaki, S. (2017). Antidepressant potential of (R)-ketamine in rodent models: Comparison with (S)-ketamine (vol 361, pg 9, 2017). The Journal of Pharmacology and Experimental Therapeutics, 362, 1-1.

Hájková, K., Jurásek, B., Čejka, J., Štefková, K., Páleníček, T., Sýkora, D., & Kuchař, M. (2020). Synthesis and identification of deschloroketamine metabolites in rats' urine and a quantification method for deschloroketamine and metabolites in rats' serum and brain tissue using liquid chromatography tandem mass spectrometry. Drug Testing and Analysis, 12, 343-360. https://doi.org/10.1002/dta.2726

Horsley, R. R., Lhotkova, E., Hajkova, K., Jurasek, B., Kuchar, M., & Palenicek, T. (2016). Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue-Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Research Bulletin, 126, 102-110. https://doi.org/10.1016/j.brainresbull.2016.05.002

Ihmsen, H., Geisslinger, G., & Schuttler, J. (2001). Stereoselective pharmacokinetics of ketamine: R(−)-ketamine inhibits the elimination of S(+)-ketamine. Clinical Pharmacology and Therapeutics, 70, 431-438. https://doi.org/10.1067/mcp.2001.119722

Irifune, M., Shimizu, T., & Nomoto, M. (1991). Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus-accumbens of mice. Pharmacology Biochemistry and Behavior, 40, 399-407. https://doi.org/10.1016/0091-3057(91)90571-I

Jimenez-Sanchez, L., Campa, L., Auberson, Y. P., & Adell, A. (2014). The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology, 39, 2673-2680. https://doi.org/10.1038/npp.2014.123

Johansson, C., Jackson, D. M., & Svensson, L. (1994). The atypical antipsychotic, remoxipride, blocks phencyclidine-induced disruption of prepulse inhibition in the rat. Psychopharmacology, 116, 437-442. https://doi.org/10.1007/BF02247475

Jurásek, B., Králík, F., Rimpelová, S., Čejka, J., Setnička, V., Ruml, T., Kuchař, M., & Kohout, M. (2018). Synthesis, absolute configuration and in vitro cytotoxicity of deschloroketamine enantiomers: Rediscovered and abused dissociative anaesthetic. New Journal of Chemistry, 42, 19360-19368. https://doi.org/10.1039/C8NJ03107J

Kitaichi, K., Noda, Y., Hasegawa, T., Furukawa, H., & Nabeshima, T. (1996). Acute phencyclidine induces aversion, but repeated phencyclidine induces preference in the place conditioning test in rats. European Journal of Pharmacology, 318, 7-9. https://doi.org/10.1016/S0014-2999(96)00875-8

Kitaichi, K., Noda, Y., Miyamoto, Y., Numaguchi, A., Osawa, H., Hasegawa, T., Furukawa, H., & Nabeshima, T. (1999). Involvement of the serotonergic neuronal system in phencyclidine-induced place aversion in rats. Behavioural Brain Research, 103, 105-111. https://doi.org/10.1016/S0166-4328(99)00029-7

Kokkinou, M., Ashok, A. H., & Howes, O. D. (2018). The effects of ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders. Molecular Psychiatry, 23, 59-69. https://doi.org/10.1038/mp.2017.190

Layer, R. T., Kaddis, F. G., & Wallace, L. J. (1993). The Nmda receptor antagonist Mk-801 elicits conditioned place preference in rats. Pharmacology Biochemistry and Behavior, 44, 245-247. https://doi.org/10.1016/0091-3057(93)90306-E

Levin, E. D., Petro, A., & Caldwell, D. P. (2005). Nicotine and clozapine actions on pre-pulse inhibition deficits caused by N-methyl-d-aspartate (NMDA) glutamatergic receptor blockade. Progress in Neuro-Psychopharmacology, 29, 581-586. https://doi.org/10.1016/j.pnpbp.2005.01.012

Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M. M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178

Liu, Y., Lin, D. Y., Wu, B. L., & Zhou, W. H. (2016). Ketamine abuse potential and use disorder. Brain Research Bulletin, 126, 68-73. https://doi.org/10.1016/j.brainresbull.2016.05.016

Macdonald, J. F., Miljkovic, Z., & Pennefather, P. (1987). Use-dependent block of excitatory amino-acid currents in cultured neurons by ketamine. Journal of Neurophysiology, 58, 251-266. https://doi.org/10.1152/jn.1987.58.2.251

Martin, D., & Lodge, D. (1985). Ketamine acts as a non-competitive N-methyl-d-aspartate antagonist on frog spinal-cord Invitro. Neuropharmacology, 24, 999-1003. https://doi.org/10.1016/0028-3908(85)90128-5

Moaddel, R., Luckenbaugh, D. A., Xie, Y., Villasenor, A., Brutsche, N. E., Machado-Vieira, R., Ramamoorthy, A., Lorenzo, M. P., Garcia, A., Bernier, M., & Torjman, M. C. (2015). D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology, 232, 399-409. https://doi.org/10.1007/s00213-014-3669-0

Muller, J., Pentyala, S., Dilger, J., & Pentyala, S. (2016). Ketamine enantiomers in the rapid and sustained antidepressant effects. Therapeutic Advances in Psychopharmacology, 6, 185-192. https://doi.org/10.1177/2045125316631267

Nishimura, M., & Sato, K. (1999). Ketamine stereoselectively inhibits rat dopamine transporter. Neuroscience Letters, 274, 131-134. https://doi.org/10.1016/S0304-3940(99)00688-6

Palenicek, T., Fujakova, M., Brunovsky, M., Balikova, M., Horacek, J., Gorman, I., Tylš, F., Tišlerová, B., Šoš, P., Bubeníková-Valešová, V., & Höschl, C. (2011). Electroencephalographic spectral and coherence analysis of ketamine in rats: Correlation with behavioral effects and pharmacokinetics. Neuropsychobiology, 63, 202-218. https://doi.org/10.1159/000321803

Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biology, 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410

Pijnenburg, A. J. J., Honig, W. M. M., Vanderheyden, J. A. M., & Vanrossum, J. M. (1976). Effects of chemical stimulation of mesolimbic dopamine system upon locomotor activity. European Journal of Pharmacology, 35, 45-58. https://doi.org/10.1016/0014-2999(76)90299-5

Pinterova-Leca, N., Horsley, R. R., Danda, H., Aidkova, M., Lhotkova, E., Šíchová, K., Štefková, K., Balíková, M., Kuchař, M., & Páleníček, T. (2020). Naphyrone (naphthylpyrovalerone): Pharmacokinetics, behavioural effects and thermoregulation in Wistar rats. Addiction Biology, 26, e12906. https://doi.org/10.1111/adb.12906

Preiss, D., & Tatar, A. (1998). U.S. Patent No. US 5811464, Washington, DC: U. S. Patent and Trademark Office.

Preskorn, S. H., Baker, B., Kolluri, S., Menniti, F. S., Krams, M., & Landen, J. W. (2008). An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. Journal of Clinical Psychopharmacology, 28, 631-637. https://doi.org/10.1097/JCP.0b013e31818a6cea

Radford, K. D., Berman, R. Y., Zhang, M., Wu, T. J., & Choi, K. H. (2020). Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharmacology, Biochemistry, and Behavior, 199, 173042. https://doi.org/10.1016/j.pbb.2020.173042

Rohan, M., Fairweather, A., & Grainger, N. (2015). Using gamma distribution to determine half-life of rotenone, applied in freshwater. Science of the Total Environment, 527, 246-251.

Schuttler, J., Stanski, D. R., White, P. F., Trevor, A. J., Horai, Y., Verotta, D., & Sheiner, L. B. (1987). Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. Journal of Pharmacokinetics and Biopharmaceutics, 15, 241-253. https://doi.org/10.1007/BF01066320

Seibenhener, M. L., & Wooten, M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Jove-J vis Exp, (96), e52434. https://doi.org/10.3791/52434

Sharp, T., Zetterstrom, T., Ljungberg, T., & Ungerstedt, U. (1987). A direct comparison of amphetamine-induced behaviors and regional brain dopamine release in the rat using intracerebral dialysis. Brain Research, 401, 322-330. https://doi.org/10.1016/0006-8993(87)91416-8

Sichova, K., Pinterova, N., Zidkova, M., Horsley, R. R., Lhotkova, E., Štefková, K., Vejmola, Č., Uttl, L., Balíková, M., Kuchař, M., & Páleníček, T. (2018). Mephedrone (4-methylmethcathinone): Acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Frontiers in Psychiatry, 8, 306. https://doi.org/10.3389/fpsyt.2017.00306

Simon, P., Dupuis, R., & Costentin, J. (1994). Thigmotaxis as an index of anxiety in mice-Influence of dopaminergic transmissions. Behavioural Brain Research, 61, 59-64. https://doi.org/10.1016/0166-4328(94)90008-6

Sleigh, J., Harvey, M., Voss, L., & Denny, B. (2014). Ketamine-More mechanisms of action than just NMDA blockade. Trends in Anaesthesia and Critical Care, 4, 76-81. https://doi.org/10.1016/j.tacc.2014.03.002

Stefkova, K., Zidkova, M., Horsley, R. R., Pinterova, N., Sichova, K., Uttl, L., Balíková, M., Danda, H., Kuchař, M., & Páleníček, T. (2017). Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Frontiers in Psychiatry, 8, 232. https://doi.org/10.3389/fpsyt.2017.00232

Sterpenich, V., Vidal, S., Hofmeister, J., Michalopoulos, G., Bancila, V., Warrot, D., Dayer, A., Desseilles, M., Aubry, J. M., Kosel, M., Schwartz, S., & Vutskits, L. (2019). Increased reactivity of the mesolimbic reward system after ketamine injection in patients with treatment-resistant major depressive disorder. Anesthesiology, 130, 923-935. https://doi.org/10.1097/ALN.0000000000002667

Suzuki, T., Kato, H., Aoki, T., Tsuda, M., Narita, M., & Misawa, M. (2000). Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sciences, 67, 383-389. https://doi.org/10.1016/S0024-3205(00)00639-1

Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (2000). Animal models of deficient sensorimotor gating: What we know, what we think we know, and what we hope to know soon. Behavioural Pharmacology, 11, 185-204. https://doi.org/10.1097/00008877-200006000-00002

Usun, Y., Eybrard, S., Meyer, F., & Louilot, A. (2013). Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex. Behavioural Brain Research, 256, 229-237. https://doi.org/10.1016/j.bbr.2013.08.017

Uttl, L., Szczurowska, E., Hajkova, K., Horsley, R. R., Stefkova, K., Hlozek, T., Šíchová, K., Balíková, M., Kuchař, M., Micale, V., & Páleníček, T. (2018). Behavioral and pharmacokinetic profile of indole-derived synthetic cannabinoids JWH-073 and JWH-210 as compared to the phytocannabinoid delta(9)-THC in rats. Frontiers in Neuroscience, 12, 703.

Vyklicky, V., Krausova, B., Cerny, J., Ladislav, M., Smejkalova, T., Kysilov, B., Korinek, M., Danacikova, S., Horak, M., Chodounska, H., & Kudova, E. (2018). Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Frontiers in Molecular Neuroscience, 11, 110.

White, P. F., Ham, J., Way, W. L., & Trevor, A. J. (1980). Pharmacology of ketamine isomers in surgical patients. Anesthesiology, 52, 231-239. https://doi.org/10.1097/00000542-198003000-00008

Woodhull, A. M. (1973). Ionic blockage of sodium channels in nerve. The Journal of General Physiology, 61, 687-708. https://doi.org/10.1085/jgp.61.6.687

Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., Alkondon, M., Yuan, P., Pribut, H. J., Singh, N. S., Dossou, K. S. S., Fang, Y., Huang, X. P., Mayo, C. L., Wainer, I. W., Albuquerque, E. X., Thompson, S. M., Thomas, C. J., Zarate Jr, C. A., & Gould, T. D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533(7604), 481-486. https://doi.org/10.1038/nature17998

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...