• This record comes from PubMed

Fine-scale movement patterns and habitat selection of little owls (Athene noctua) from two declining populations

. 2021 ; 16 (9) : e0256608. [epub] 20210927

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Advances in bio-logging technology for wildlife monitoring have expanded our ability to study space use and behavior of many animal species at increasingly detailed scales. However, such data can be challenging to analyze due to autocorrelation of GPS positions. As a case study, we investigated spatiotemporal movements and habitat selection in the little owl (Athene noctua), a bird species that is declining in central Europe and verges on extinction in Denmark. We equipped 6 Danish food-supplemented little owls and 6 non-supplemented owls in the Czech Republic with high-resolution GPS loggers that recorded one position per minute. Nightly space use, measured as 95% kernel density estimates, of Danish male owls were on average 62 ha (± 64 SD, larger than any found in previous studies) compared to 2 ha (± 1) in females, and to 3 ± 1 ha (males) versus 3 ± 5 ha (females) in the Czech Republic. Foraging Danish male owls moved on average 4-fold further from their nest and at almost double the distance per hour than Czech males. To create availability data for the habitat selection analysis, we accounted for high spatiotemporal autocorrelation of the GPS data by simulating correlated random walks with the same autocorrelation structure as the actual little owl movement trajectories. We found that habitat selection was similar between Danish and Czech owls, with individuals selecting for short vegetation and areas with high structural diversity. Our limited sample size did not allow us to infer patterns on a population level, but nevertheless demonstrates how high-resolution GPS data can help to identify critical habitat requirements to better formulate conservation actions on a local scale.

See more in PubMed

Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences. 2017;114(30):E6089–E96. doi: 10.1073/pnas.1704949114 PubMed DOI PMC

Doherty TS, Driscoll DA. Coupling movement and landscape ecology for animal conservation in production landscapes. Proceedings of the Royal Society B: Biological Sciences. 2018;285(1870):20172272. doi: 10.1098/rspb.2017.2272 PubMed DOI PMC

Kerr JT, Ostrovsky M. From space to species: ecological applications for remote sensing. Trends in ecology & evolution. 2003;18(6):299–305.

Baldwin RF, Calhoun AJ, deMaynadier PG. Conservation planning for amphibian species with complex habitat requirements: a case study using movements and habitat selection of the wood frog Rana sylvatica. Journal of Herpetology. 2006;40(4):442–53.

Zimmermann NE, Edwards TC Jr, Graham CH, Pearman PB, Svenning JC. New trends in species distribution modelling. Ecography. 2010;33(6):985–9.

Martin J, Tolon V, Van Moorter B, Basille M, Calenge C. On the use of telemetry in habitat selection studies. Martin J(2009) Habitat selection and movement by brown bears in multiple-use landscapes PhD Thesis Claude Bernard University, Lyon, France. 2009:89–107.

Fraser KC, Shave A, Savage A, Ritchie A, Bell K, Siegrist J, et al.. Determining fine‐scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology. Journal of Avian Biology. 2017;48(3):339–45.

Rooney S, Wolfe A, Hayden T. Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Review. 1998;28(2):89–98.

Martin J, Calenge C, Quenette P-Y, Allainé D. Importance of movement constraints in habitat selection studies. Ecological modelling. 2008;213(2):257–62.

Turchin P. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants: Sinauer Associates; 1998.

Fieberg J, Matthiopoulos J, Hebblewhite M, Boyce MS, Frair JL. Correlation and studies of habitat selection: problem, red herring or opportunity? Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1550):2233–44. doi: 10.1098/rstb.2010.0079 PubMed DOI PMC

Quaglietta L, Porto M. SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. Movement ecology. 2019;7(1):11. PubMed PMC

Al-Melhim WN, Amr ZS, Disi AM, Katbeh-Bader A. On the diet of the little owl, Athene noctua, in the Safawi area, eastern Jordan. Zoology in the Middle East. 1997;15(1):19–28.

Charter M, Leshem Y, Izhaki I, Guershon M, Kiat Y. The diet of the Little Owl, Athene noctua, in Israel. Zoology in the Middle East. 2006;39(1):31–40.

Goutner V, Alivizatos H. Diet of the Barn Owl (Tyto alba) and Little Owl (Athene noctua) in wetlands of northeastern Greece. Belgian journal of zoology. 2003;133(1):15–22.

Hounsome T, O’Mahony D, Delahay R. The diet of little owls Athene noctua in Gloucestershire, England. Bird study. 2004;51(3):282–4.

Tomé R, Catry P, Bloise C, Korpimäki E. Breeding density and success, and diet composition of Little Owls Athene noctua in steppe-like habitats in Portugal. Ornis Fennica. 2008;85(1):22.

Šálek M, Riegert J, Křivan V. The impact of vegetation characteristics and prey availability on breeding habitat use and diet of Little Owls Athene noctua in Central European farmland. Bird study. 2010;57(4):495–503.

Tomé R, Dias MP, Chumbinho AC, Bloise C. Influence of perch height and vegetation structure on the foraging behaviour of Little Owls Athene noctua: how to achieve the same success in two distinct habitats. Ardea. 2011;99(1):17–26.

Sunde P, Thorup K, Jacobsen LB, Rahbek C. Weather conditions drive dynamic habitat selection in a generalist predator. PloS one. 2014;9(2):e88221. doi: 10.1371/journal.pone.0088221 PubMed DOI PMC

Ieronymidou C, Pople R, Burfield I, Ramirez I. The European Red List of Birds 2015. Bird Census News. 2015;28(1):3–19.

Exo K. Population ecology of Little Owls Athene noctua in Central Europe: a review. The ecology and conservation of European owls Joint Nature Conservation Committee, Peterborough. 1992:64–75.

Šálek M, Schröpfer L. Recent decline of the Little Owl (Athene noctua) in the Czech Republic. Polish Journal of Ecology. 2008;56:527–34.

Zabala J, Zuberogoitia I, Martínez-Climent JA, Martínez JE, Azkona A, Hidalgo S, et al.. Occupancy and abundance of Little Owl (Athene noctua) in an intensively managed forest area in Biscay. Ornis Fennica. 2006;83(3):97.

Van Nieuwenhuyse D, Génot J-C, Johnson DH. The little owl: conservation, ecology and behavior of Athene noctua: Cambridge University Press Cambridge; 2008.

Sunde P. Bestandsstatus for danske kirkeugler 2019–20, samt afrapportering af fodringsprojekt. In: Universitet Aarhus, editor.: DCE—Nationalt Center for Miljø og Energi; 2021.

Holsegård-Rasmussen MH, Sunde P, Thorup K, Jacobsen LB, Ottesen N, Svenne S, et al.. Variation in working effort in Danish Little Owls Athene noctua. Ardea. 2009;97(4):547–54.

Thorup K, Sunde P, Jacobsen LB, Rahbek C. Breeding season food limitation drives population decline of the Little Owl Athene noctua in Denmark. Ibis. 2010;152(4):803–14.

Thorup K, Pedersen D, Sunde P, Jacobsen LB, Rahbek C. Seasonal survival rates and causes of mortality of Little Owls in Denmark. Journal of Ornithology. 2013;154(1):183–90.

Sunde P, Mayer M, Fox AD, Holm-Andersen A, Sálek M, Lindhøj FJ, et al.. Det biologiske levegrundlag for kirkeugler i Danmark. In: University A, editor.: DCE–Nationalt Center for Miljø og Energi; 2021. p. 58.

Perrig M, Gruebler MU, Keil H, Naef-Daenzer B. Experimental food supplementation affects the physical development, behaviour and survival of Little Owl Athene noctua nestlings. Ibis. 2014;156(4):755–67. doi: 10.1111/ibi.12171 WOS:000341885300005. DOI

Jacobsen LB, Chrenková M, Sunde P, Thorup K. Effects of food provisioning and habitat management on spatial behaviour of little owls during the breeding season. Ornis Fennica. 2016;93(2).

Grüebler MU, Müller M, Michel VT, Perrig M, Keil H, Naef-Daenzer B, et al.. Brood provisioning and reproductive benefits in relation to habitat quality: a food supplementation experiment. Animal Behaviour. 2018;141:45–55.

Staggenborg J, Schaefer HM, Stange C, Naef‐Daenzer B, Grüebler MU. Time and travelling costs during chick‐rearing in relation to habitat quality in Little Owls Athene noctua. Ibis. 2017;159(3):519–31.

Šálek M, Lövy M. Spatial ecology and habitat selection of Little Owl Athene noctua during the breeding season in Central European farmland. Bird Conservation International. 2012;22(3):328–38.

Winnie JA Jr, Cross P, Getz W. Habitat quality and heterogeneity influence distribution and behavior in African buffalo (Syncerus caffer). Ecology. 2008;89(5):1457–68. doi: 10.1890/07-0772.1 PubMed DOI

Sunde P, Thorup K, Jacobsen LB, Holsegard-Rasmussen MH, Ottessen N, Svenne S, et al.. Spatial behaviour of little owls (Athene noctua) in a declining low-density population in Denmark. Journal of Ornithology. 2009;150(3):537–48. doi: 10.1007/s10336-009-0378-2 WOS:000267394400003. DOI

Chrenková M, Dobrý M, Šálek M. Further evidence of large-scale population decline and range contraction of the little owl Athene noctua in Central Europe. Folia Zoologica. 2017;66(2):106–16.

Šálek M, Schröpfer L. Population decline of the little owl (Athene noctua Scop.) in the Czech Republic. Polish Journal of Ecology. 2008;56(3):527–34.

Šálek M, Chrenková M, Dobrý M, Kipson M, Grill S, Václav R. Scale-dependent habitat associations of a rapidly declining farmland predator, the Little Owl Athene noctua, in contrasting agricultural landscapes. Agriculture, Ecosystems & Environment. 2016;224:56–66.

Tryjanowski P, Hartel T, Báldi A, Szymański P, Tobolka M, Herzon I, et al.. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithologica. 2011;46(1):1–12.

Jacob J, Imholt C, Caminero-Saldaña C, Couval G, Giraudoux P, Herrero-Cófreces S, et al.. Europe-wide outbreaks of common voles in 2019. Journal of Pest Science. 2020;93(2):703–9.

Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour. 2016;111:I–IX. 10.1016/S0003-3472(15)00461-3. PubMed DOI

Lewis JS, Rachlow JL, Garton EO, Vierling LA. Effects of habitat on GPS collar performance: using data screening to reduce location error. Journal of Applied Ecology. 2007;44(3):663–71.

Calenge C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecological modelling. 2006;197(3–4):516–9.

Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54(2):427–32.

Johnson DH. The comparison of usage and availability measurements for evaluatiing resource preference. Ecology. 1980;61(1):65–71. doi: 10.2307/1937156 WOS:A1980JY71100011. DOI

Killeen J, Thurfjell H, Ciuti S, Paton D, Musiani M, Boyce MS. Habitat selection during ungulate dispersal and exploratory movement at broad and fine scale with implications for conservation management. Movement ecology. 2014;2(1):15. doi: 10.1186/s40462-014-0015-4 PubMed DOI PMC

Thurfjell H, Ciuti S, Boyce MS. Applications of step-selection functions in ecology and conservation. Movement ecology. 2014;2(1):4. doi: 10.1186/2051-3933-2-4 PubMed DOI PMC

Avgar T, Lele SR, Keim JL, Boyce MS. Relative Selection Strength: Quantifying effect size in habitat‐and step‐selection inference. Ecology and evolution. 2017;7(14):5322–30. doi: 10.1002/ece3.3122 PubMed DOI PMC

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, et al.. Package ‘lme4’. 2015.

Anderson D, Burnham K. Model selection and multi-model inference. Second NY: Springer-Verlag. 2004;63(2020):10.

Murtaugh PA. Performance of several variable‐selection methods applied to real ecological data. Ecology letters. 2009;12(10):1061–8. doi: 10.1111/j.1461-0248.2009.01361.x PubMed DOI

Barton K. Package “MuMIn”: Multi-Model Inference. R package, Version 1.15. 6. 2016.

Arnold TW. Uninformative parameters and model selection using Akaike’s Information Criterion. The Journal of Wildlife Management. 2010;74(6):1175–8.

Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution. 2010;1(1):3–14.

R Core Team. R: A language and environment for statistical computing. 2013.

Mitchell LJ, White PC, Arnold KE. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PloS one. 2019;14(7):e0219357. doi: 10.1371/journal.pone.0219357 PubMed DOI PMC

Sunde P, Bølstad MS, Møller JD. Reversed sexual dimorphism in tawny owls, Strix aluco, correlates with duty division in breeding effort. Oikos. 2003;101(2):265–78. doi: 10.1034/j.1600-0706.2003.12203.x WOS:000182800600005. DOI

Zuberogoitia I, Zabala J, Hidalgo S, Azkona A, Castillo I, Martinez J, et al.. Seasonal dynamics in social behaviour and spacing patterns of the Little Owl Athene noctua. Ornis Fennica. 2007;84(4):173.

Michel VT, Naef-Daenzer B, Keil H, Grüebler MU. Reproductive consequences of farmland heterogeneity in little owls (Athene noctua). Oecologia. 2017;183(4):1019–29. doi: 10.1007/s00442-017-3823-6 PubMed DOI

Grzywaczewski G. Home range size and habitat use of the Little Owl Athene noctua in East Poland. Ardea. 2009;97(4):541–5.

Framis H, Holroyd G, Mañosa Rife S. Home range and habitat use of little owl (Athene noctua) in an agricultural landscape in coastal Catalonia, Spain. Animal Biodiversity and Conservation, 2011, vol 34, num 2, p 369–378. 2011.

Bryant DM. Energy expenditure in wild birds. Proceedings of the Nutrition Society. 1997;56(3):1025–39. doi: 10.1079/pns19970107 PubMed DOI

Lemon WC. The energetics of lifetime reproductive success in the zebra finch Taeniopygia guttata. Physiological Zoology. 1993;66(6):946–63.

Ratcliffe N, Furness R. The effect of parental age and experimentally manipulated brood size on the foraging effort and breeding performance of great skuas (Catharacta skua). Journal of Zoology. 1999;249(2):195–201.

Reynolds P, Gorman ML. The timing of hunting in short‐eared owls (Asio flammeus) in relation to the activity patterns of Orkney voles (Microtus arvalis orcadensis). Journal of Zoology. 1999;247(3):371–9.

Bellamy P, Shore R, Ardeshir D, Treweek J, Sparks T. Road verges as habitat for small mammals in Britain. Mammal Review. 2000;30(2):131–9.

Apolloni N, Grüebler M, Arlettaz R, Gottschalk T, Naef‐Daenzer B. Habitat selection and range use of little owls in relation to habitat patterns at three spatial scales. Animal conservation. 2018;21(1):65–75.

Šálek M, Bažant M, Żmihorski M. Active farmsteads are year‐round strongholds for farmland birds. Journal of Applied Ecology. 2018;55(4):1908–18.

Šálek M, Václav R, Sedláček F. Uncropped habitats under power pylons are overlooked refuges for small mammals in agricultural landscapes. Agriculture, Ecosystems & Environment. 2020;290:106777.

Šálek M, Kreisinger J, Sedláček F, Albrecht T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landscape and Urban Planning. 2010;98(2):86–91.

Šálek M, Poprach K, Opluštil L, Melichar D, Mráz J, Václav R. Assessment of relative mortality rates for two rapidly declining farmland owls in the Czech Republic (Central Europe). European Journal of Wildlife Research. 2019;65(1):19.

Sunde P, Thorup K, Jacobsen LB, Holsegård-Rasmussen MH, Ottessen N, Svenné S, et al.. Spatial behaviour of little owls (Athene noctua) in a declining low-density population in Denmark. Journal of Ornithology. 2009;150(3):537–48.

Thomas C, Marshall E. Arthropod abundance and diversity in differently vegetated margins of arable fields. Agriculture, Ecosystems & Environment. 1999;72(2):131–44.

Batáry P, Holzschuh A, Orci KM, Samu F, Tscharntke T. Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture, Ecosystems & Environment. 2012;146(1):130–6.

Šálek M, Bažant M, Żmihorski M, Gamero A. Evaluation of agri-environmental schemes in intensively-used farmland shows higher biodiversity in seed-rich strips. Agriculture, Ecosystems and Environment. 2020;submitted.

Newest 20 citations...

See more in
Medvik | PubMed

Little Owl Aggression and Territory in Urban and Rural Landscapes

. 2024 Jan 15 ; 14 (2) : . [epub] 20240115

See more in PubMed

Dryad
10.5061/dryad.k3j9kd57m

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...