• This record comes from PubMed

Structural basis of rotavirus RNA chaperone displacement and RNA annealing

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
213437/Z/18/Z Wellcome Trust - United Kingdom
BB/M012573/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
108466/Z/15/Z Wellcome Trust - United Kingdom
BB/M011151/1 Biotechnology and Biological Sciences Research Council - United Kingdom
208385/Z/17/Z Wellcome Trust - United Kingdom
220628/Z/20/Z Wellcome Trust - United Kingdom

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.

See more in PubMed

McDonald S. M., Nelson M. I., Turner P. E., Patton J. T., Reassortment in segmented RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 14, 448–460 (2016). PubMed PMC

McDonald S. M., Patton J. T., Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 19, 136–144 (2011). PubMed PMC

Borodavka A., Desselberger U., Patton J. T., Genome packaging in multi-segmented dsRNA viruses: Distinct mechanisms with similar outcomes. Curr. Opin. Virol. 33, 106–112 (2018). PubMed PMC

Bravo J. P. K., et al. ., Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res. 46, 7924–7937 (2018). PubMed PMC

Newburn L. R., White K. A., Trans-acting RNA-RNA interactions in segmented RNA viruses. Viruses 11, 751 (2019). PubMed PMC

Taraporewala Z. F., Patton J. T., Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res. 101, 57–66 (2004). PubMed

Jayaram H., Taraporewala Z., Patton J. T., Prasad B. V. V., Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). PubMed

Jiang X., et al. ., Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: Implications for genome replication. J. Virol. 80, 10829–10835 (2006). PubMed PMC

Taraporewala Z. F., Patton J. T., Chen D., Patton J. T., Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001). PubMed PMC

Taraporewala Z. F., et al. ., Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system. J. Virol. 80, 7984–7994 (2006). PubMed PMC

Silvestri L. S., Taraporewala Z. F., Patton J. T., Rotavirus replication: Plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J. Virol. 78, 7763–7774 (2004). PubMed PMC

Kanai Y., et al. ., Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. U.S.A. 114, 2349–2354 (2017). PubMed PMC

Desselberger U., At last: A fully tractable, plasmid only based reverse genetics system for rotavirus. Future Virol. 12, 519–524 (2017).

Desselberger U., Reverse genetics of rotavirus. Proc. Natl. Acad. Sci. 114, 2106–2108 (2017). PubMed PMC

Viskovska M., et al. ., Probing the sites of interactions of rotaviral proteins involved in replication. J. Virol. 88, 12866–12881 (2014). PubMed PMC

Hu L., Crawford S. E., Hyser J. M., Estes M. K., Prasad B. V., Rotavirus non-structural proteins: Structure and function. Curr. Opin. Virol. 2, 380–388 (2012). PubMed PMC

Criglar J. M., et al. ., Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proc. Natl. Acad. Sci. U.S.A. 115, E12015–E12023 (2018). PubMed PMC

Criglar J. M., et al. ., A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly. J. Virol. 88, 786–798 (2014). PubMed PMC

Borodavka A., Dykeman E. C., Schrimpf W., Lamb D. C., Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. eLife 6, 1–22 (2017). PubMed PMC

Hu L., et al. ., Crystallographic analysis of rotavirus NSP2-RNA complex reveals specific recognition of 5′ GG sequence for RTPase activity. J. Virol. 86, 10547–10557 (2012). PubMed PMC

Haustein E., Schwille P., Single-molecule spectroscopic methods. Curr. Opin. Struct. Biol. 14, 531–540 (2004). PubMed

Zhang Q., et al. ., RNA exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. Nat. Struct. Mol. Biol. 26, 237–247 (2019). PubMed PMC

Castello A., et al. ., Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016). PubMed PMC

Conley M. J., et al. ., Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 565, 377–381 (2019). PubMed

Scheres S. H. W., Processing of Structurally Heterogeneous Cryo-EM Data in RELION (Elsevier Inc., ed. 1, 2016). PubMed

Lyumkis D., Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019). PubMed PMC

Vasquez-Del Carpio R., Gonzalez-Nilo F. D., Riadi G., Taraporewala Z. F., Patton J. T., Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J. Mol. Biol. 362, 539–554 (2006). PubMed PMC

Taraporewala Z., Chen D., Patton J. T., Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J. Virol. 73, 9934–9943 (1999). PubMed PMC

Geiger F., et al. ., Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J, e107711, 10.15252/embj.2021107711 (2021). PubMed DOI PMC

Strauss S., et al. ., Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus. bioRxiv [Preprint] (2021). 10.1101/2021.03.22.435476. Accessed 22 March 2021. PubMed DOI PMC

Papa G., et al. ., Recombinant rotaviruses rescued by reverse genetics reveal the role of NSP5 hyperphosphorylation in the assembly of viral factories. J. Virol. 94, 1–23 (2019). PubMed PMC

Eichwald C., Rodriguez J. F., Burrone O. R., Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J. Gen. Virol. 85, 625–634 (2004). PubMed

Thirumalai D., Woodson S. A., Kinetics of folding of proteins and RNA. Acc. Chem. Res. 29, 433–439 (1996).

Ditzler M. A., Rueda D., Mo J., Håkansson K., Walter N. G., A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res. 36, 7088–7099 (2008). PubMed PMC

Noller H. F., RNA structure: Reading the ribosome. Science (80-.) 309, 1508–1514 (2005). PubMed

Bieniasz P., Telesnitsky A., Multiple, switchable protein:RNA interactions regulate human immunodeficiency virus type 1 assembly. Annu. Rev. Virol. 5, 165–183 (2018). PubMed

Herschlag D., RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995). PubMed

Russell R., RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008). PubMed PMC

Jarmoskaite I., Russell R., DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip. Rev. RNA 2, 135–152 (2011). PubMed PMC

Rajkowitsch L., et al. ., RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118–130 (2007). PubMed

Taraporewala Z. F., Patton J. T., Identification and Characterization of the Helix-Destabilizing Activity of Rotavirus Nonstructural Protein NSP2 , Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001). PubMed PMC

Borodavka A., Ault J., Stockley P. G. P. G., Tuma R., Evidence that avian reovirus σNS is an RNA chaperone: Implications for genome segment assortment. Nucleic Acids Res. 43, 7044–7057 (2015). PubMed PMC

Mayer O., Rajkowitsch L., Lorenz C., Konrat R., Schroeder R., RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res. 35, 1257–1269 (2007). PubMed PMC

Belfetmi A., et al. ., Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA 22, 506–517 (2016). PubMed PMC

Holmstrom E. D., Liu Z., Nettels D., Best R. B., Schuler B., Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019). PubMed PMC

Vogel J., Luisi B. F., Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9, 578–589 (2011). PubMed PMC

Santiago-Frangos A., Woodson S. A., Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA 9, e1475 (2018). PubMed PMC

Woodson S. A., Panja S., Santiago-Frangos A., Proteins that chaperone RNA regulation. Microbiol. Spectr. 6, E6089–E6096 (2018). PubMed PMC

Santiago-Frangos A., Kavita K., Schu D. J., Gottesman S., Woodson S. A., C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc. Natl. Acad. Sci. U.S.A. 113, E6089–E6096 (2016). PubMed PMC

Santiago-Frangos A., et al. ., Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc. Natl. Acad. Sci. U.S.A. 116, 10978–10987 (2019). PubMed PMC

Santiago-Frangos A., Jeliazkov J. R., Gray J. J., Woodson S. A., Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 6, 1–25 (2017). PubMed PMC

Jayaram H., Taraporewala Z., Patton J. T., Prasad B. V., Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). PubMed

Goddard T. D., et al. ., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). PubMed PMC

Kidmose R. T., et al. ., Namdinator - Automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019). PubMed PMC

Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed

Afonine P. V., et al. ., Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018). PubMed PMC

Chen V. B., et al. ., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC

Ashkenazy H., et al. ., ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016). PubMed PMC

Crooks G. E., Hon G., Chandonia J. M., Brenner S. E., WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004). PubMed PMC

Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC

Kudryavtsev V., et al. ., Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13, 1060–1078 (2012). PubMed

Cordes T., Vogelsang J., Tinnefeld P., On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009). PubMed

Schrimpf W., Barth A., Hendrix J., Lamb D. C., Computational tool PAM: A framework for integrated analysis of imaging, single-molecule, and ensemble fluorescence data. Biophys. J. 114, 1518–1528 (2018). PubMed PMC

Cryar A., Groves K., Quaglia M., Online hydrogen-deuterium exchange traveling wave ion mobility mass spectrometry (HDX-IM-MS): A systematic evaluation. J. Am. Soc. Mass Spectrom. 28, 1192–1202 (2017). PubMed PMC

Lau A. M. C., Ahdash Z., Martens C., Politis A., Deuteros: Software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics 35, 3171–3173 (2019). PubMed PMC

Arnold M., Patton J. T., Mcdonald S. M., Culturing, storage, and quantification of rotaviruses. Curr. Protoc. Microbiol. 1–29 (2012). PubMed PMC

Papa G., et al. ., CRISPR-Csy4-mediated editing of rotavirus double-stranded RNA genome. Cell Rep. 32, 108205 (2020). PubMed PMC

Schindelin J., et al. ., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...