Structural basis of rotavirus RNA chaperone displacement and RNA annealing
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
213437/Z/18/Z
Wellcome Trust - United Kingdom
BB/M012573/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
108466/Z/15/Z
Wellcome Trust - United Kingdom
BB/M011151/1
Biotechnology and Biological Sciences Research Council - United Kingdom
208385/Z/17/Z
Wellcome Trust - United Kingdom
220628/Z/20/Z
Wellcome Trust - United Kingdom
PubMed
34615715
PubMed Central
PMC8521686
DOI
10.1073/pnas.2100198118
PII: 2100198118
Knihovny.cz E-resources
- Keywords
- RNA chaperones, genome assembly, ribonucleoproteins, rotavirus,
- MeSH
- Cryoelectron Microscopy MeSH
- Genome, Viral genetics MeSH
- Molecular Chaperones metabolism MeSH
- Models, Molecular MeSH
- RNA-Binding Proteins metabolism MeSH
- Ribonucleoproteins metabolism MeSH
- RNA, Viral genetics MeSH
- Rotavirus genetics growth & development metabolism MeSH
- RNA Folding genetics MeSH
- Viral Nonstructural Proteins metabolism MeSH
- Viral Genome Packaging genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Molecular Chaperones MeSH
- RNA-Binding Proteins MeSH
- Ribonucleoproteins MeSH
- RNA, Viral MeSH
- Viral Nonstructural Proteins MeSH
Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.
Australian Research Council Australia Clayton VIC 3800 Australia
Department of Biochemistry University of Cambridge Cambridge CB2 1QW United Kingdom
Department of Biochemistry University of Cambridge Cambridge CB2 1QW United Kingdom;
Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic
See more in PubMed
McDonald S. M., Nelson M. I., Turner P. E., Patton J. T., Reassortment in segmented RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 14, 448–460 (2016). PubMed PMC
McDonald S. M., Patton J. T., Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 19, 136–144 (2011). PubMed PMC
Borodavka A., Desselberger U., Patton J. T., Genome packaging in multi-segmented dsRNA viruses: Distinct mechanisms with similar outcomes. Curr. Opin. Virol. 33, 106–112 (2018). PubMed PMC
Bravo J. P. K., et al. ., Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res. 46, 7924–7937 (2018). PubMed PMC
Newburn L. R., White K. A., Trans-acting RNA-RNA interactions in segmented RNA viruses. Viruses 11, 751 (2019). PubMed PMC
Taraporewala Z. F., Patton J. T., Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res. 101, 57–66 (2004). PubMed
Jayaram H., Taraporewala Z., Patton J. T., Prasad B. V. V., Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). PubMed
Jiang X., et al. ., Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: Implications for genome replication. J. Virol. 80, 10829–10835 (2006). PubMed PMC
Taraporewala Z. F., Patton J. T., Chen D., Patton J. T., Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001). PubMed PMC
Taraporewala Z. F., et al. ., Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system. J. Virol. 80, 7984–7994 (2006). PubMed PMC
Silvestri L. S., Taraporewala Z. F., Patton J. T., Rotavirus replication: Plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J. Virol. 78, 7763–7774 (2004). PubMed PMC
Kanai Y., et al. ., Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. U.S.A. 114, 2349–2354 (2017). PubMed PMC
Desselberger U., At last: A fully tractable, plasmid only based reverse genetics system for rotavirus. Future Virol. 12, 519–524 (2017).
Desselberger U., Reverse genetics of rotavirus. Proc. Natl. Acad. Sci. 114, 2106–2108 (2017). PubMed PMC
Viskovska M., et al. ., Probing the sites of interactions of rotaviral proteins involved in replication. J. Virol. 88, 12866–12881 (2014). PubMed PMC
Hu L., Crawford S. E., Hyser J. M., Estes M. K., Prasad B. V., Rotavirus non-structural proteins: Structure and function. Curr. Opin. Virol. 2, 380–388 (2012). PubMed PMC
Criglar J. M., et al. ., Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proc. Natl. Acad. Sci. U.S.A. 115, E12015–E12023 (2018). PubMed PMC
Criglar J. M., et al. ., A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly. J. Virol. 88, 786–798 (2014). PubMed PMC
Borodavka A., Dykeman E. C., Schrimpf W., Lamb D. C., Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. eLife 6, 1–22 (2017). PubMed PMC
Hu L., et al. ., Crystallographic analysis of rotavirus NSP2-RNA complex reveals specific recognition of 5′ GG sequence for RTPase activity. J. Virol. 86, 10547–10557 (2012). PubMed PMC
Haustein E., Schwille P., Single-molecule spectroscopic methods. Curr. Opin. Struct. Biol. 14, 531–540 (2004). PubMed
Zhang Q., et al. ., RNA exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. Nat. Struct. Mol. Biol. 26, 237–247 (2019). PubMed PMC
Castello A., et al. ., Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016). PubMed PMC
Conley M. J., et al. ., Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 565, 377–381 (2019). PubMed
Scheres S. H. W., Processing of Structurally Heterogeneous Cryo-EM Data in RELION (Elsevier Inc., ed. 1, 2016). PubMed
Lyumkis D., Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019). PubMed PMC
Vasquez-Del Carpio R., Gonzalez-Nilo F. D., Riadi G., Taraporewala Z. F., Patton J. T., Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J. Mol. Biol. 362, 539–554 (2006). PubMed PMC
Taraporewala Z., Chen D., Patton J. T., Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J. Virol. 73, 9934–9943 (1999). PubMed PMC
Geiger F., et al. ., Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J, e107711, 10.15252/embj.2021107711 (2021). PubMed DOI PMC
Strauss S., et al. ., Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus. bioRxiv [Preprint] (2021). 10.1101/2021.03.22.435476. Accessed 22 March 2021. PubMed DOI PMC
Papa G., et al. ., Recombinant rotaviruses rescued by reverse genetics reveal the role of NSP5 hyperphosphorylation in the assembly of viral factories. J. Virol. 94, 1–23 (2019). PubMed PMC
Eichwald C., Rodriguez J. F., Burrone O. R., Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J. Gen. Virol. 85, 625–634 (2004). PubMed
Thirumalai D., Woodson S. A., Kinetics of folding of proteins and RNA. Acc. Chem. Res. 29, 433–439 (1996).
Ditzler M. A., Rueda D., Mo J., Håkansson K., Walter N. G., A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res. 36, 7088–7099 (2008). PubMed PMC
Noller H. F., RNA structure: Reading the ribosome. Science (80-.) 309, 1508–1514 (2005). PubMed
Bieniasz P., Telesnitsky A., Multiple, switchable protein:RNA interactions regulate human immunodeficiency virus type 1 assembly. Annu. Rev. Virol. 5, 165–183 (2018). PubMed
Herschlag D., RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995). PubMed
Russell R., RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008). PubMed PMC
Jarmoskaite I., Russell R., DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip. Rev. RNA 2, 135–152 (2011). PubMed PMC
Rajkowitsch L., et al. ., RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118–130 (2007). PubMed
Taraporewala Z. F., Patton J. T., Identification and Characterization of the Helix-Destabilizing Activity of Rotavirus Nonstructural Protein NSP2 , Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001). PubMed PMC
Borodavka A., Ault J., Stockley P. G. P. G., Tuma R., Evidence that avian reovirus σNS is an RNA chaperone: Implications for genome segment assortment. Nucleic Acids Res. 43, 7044–7057 (2015). PubMed PMC
Mayer O., Rajkowitsch L., Lorenz C., Konrat R., Schroeder R., RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res. 35, 1257–1269 (2007). PubMed PMC
Belfetmi A., et al. ., Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA 22, 506–517 (2016). PubMed PMC
Holmstrom E. D., Liu Z., Nettels D., Best R. B., Schuler B., Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019). PubMed PMC
Vogel J., Luisi B. F., Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9, 578–589 (2011). PubMed PMC
Santiago-Frangos A., Woodson S. A., Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA 9, e1475 (2018). PubMed PMC
Woodson S. A., Panja S., Santiago-Frangos A., Proteins that chaperone RNA regulation. Microbiol. Spectr. 6, E6089–E6096 (2018). PubMed PMC
Santiago-Frangos A., Kavita K., Schu D. J., Gottesman S., Woodson S. A., C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc. Natl. Acad. Sci. U.S.A. 113, E6089–E6096 (2016). PubMed PMC
Santiago-Frangos A., et al. ., Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc. Natl. Acad. Sci. U.S.A. 116, 10978–10987 (2019). PubMed PMC
Santiago-Frangos A., Jeliazkov J. R., Gray J. J., Woodson S. A., Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 6, 1–25 (2017). PubMed PMC
Jayaram H., Taraporewala Z., Patton J. T., Prasad B. V., Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). PubMed
Goddard T. D., et al. ., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). PubMed PMC
Kidmose R. T., et al. ., Namdinator - Automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019). PubMed PMC
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Afonine P. V., et al. ., Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018). PubMed PMC
Chen V. B., et al. ., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC
Ashkenazy H., et al. ., ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016). PubMed PMC
Crooks G. E., Hon G., Chandonia J. M., Brenner S. E., WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004). PubMed PMC
Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC
Kudryavtsev V., et al. ., Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13, 1060–1078 (2012). PubMed
Cordes T., Vogelsang J., Tinnefeld P., On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009). PubMed
Schrimpf W., Barth A., Hendrix J., Lamb D. C., Computational tool PAM: A framework for integrated analysis of imaging, single-molecule, and ensemble fluorescence data. Biophys. J. 114, 1518–1528 (2018). PubMed PMC
Cryar A., Groves K., Quaglia M., Online hydrogen-deuterium exchange traveling wave ion mobility mass spectrometry (HDX-IM-MS): A systematic evaluation. J. Am. Soc. Mass Spectrom. 28, 1192–1202 (2017). PubMed PMC
Lau A. M. C., Ahdash Z., Martens C., Politis A., Deuteros: Software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics 35, 3171–3173 (2019). PubMed PMC
Arnold M., Patton J. T., Mcdonald S. M., Culturing, storage, and quantification of rotaviruses. Curr. Protoc. Microbiol. 1–29 (2012). PubMed PMC
Papa G., et al. ., CRISPR-Csy4-mediated editing of rotavirus double-stranded RNA genome. Cell Rep. 32, 108205 (2020). PubMed PMC
Schindelin J., et al. ., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC