Antioxidant Activity and Cytotoxicity against Cancer Cell Lines of the Extracts from Novel Xylaria Species Associated with Termite Nests and LC-MS Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PHD/0218/2559
The Royal Golden Jubilee Ph.D. programme, Thailand
No. CZ.02.1.01/0.0/0.0/16_019/0000868
The European Regional Development Fund-Project ENOCH
PubMed
34679692
PubMed Central
PMC8533195
DOI
10.3390/antiox10101557
PII: antiox10101557
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS fingerprint, Xylaria, antioxidant, cytotoxicity, termite nest,
- Publikační typ
- časopisecké články MeSH
Xylaria species associated with termite nests or soil have been considered rare species in nature and the few which have been reported upon have been found to act as a rich source of bioactive metabolites. This study evaluated 10 ethyl acetate extracts of five new Xylaria species associated with termite nests or soil for their antioxidant activity, and cytotoxicity against different cancer and normal cell lines. DPPH and ABTS radical scavenging activities of the extracts demonstrated strong capacity with low IC50 values. The highest observed activities belonged to X. vinacea SWUF18-2.3 having IC50 values of 0.194 ± 0.031 mg/mL for DPPH assay and 0.020 ± 0.004 mg/mL for ABTS assay. Total phenolic content ranged from 0.826 ± 0.123 to 3.629 ± 0.381 g GAE/g crude extract which correlated with antioxidant activities. The high total phenolic content could contribute to the high antioxidant activities. Cytotoxicity was recorded against A549, HepG2, HeLa and PNT2 and resulted in broad spectrum to specific activity depending on the cell lines. The highest activities were observed with X. subintraflava SWUF16-11.1 which resulted in 11.15 ± 0.32 to 13.17 ± 2.37% cell viability at a concentration of 100 µg/mL. Moreover, LC-MS fingerprints indicated over 61 peaks from all isolates. There were 18 identified and 43 unidentified compounds compared to mass databases. The identified compounds were from various groups of diterpenoids, diterpenes, cytochalasin, flavones, flavonoids, polyphenols, steroids and derivatives, triterpenoids and tropones. These results indicate that Xylaria spp. has abundant secondary metabolites that could be further explored for their therapeutic properties.
Department of Biochemistry Faculty of Science Kasetsart University Bangkok 10900 Thailand
Department of Biology Faculty of Science Nakhon Phanom University Nakhon Phanom 48000 Thailand
Department of Biology Faculty of Science Srinakharinwirot University Bangkok 10110 Thailand
Department of Microbiology Faculty of Science Srinakharinwirot University Bangkok 10110 Thailand
Zobrazit více v PubMed
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC
Ferreira I.C., Barros L., Abreu R.M. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI
Collins A.R. Antioxidant intervention as a route to cancer prevention. Eur. J. Cancer. 2005;41:1923–1930. doi: 10.1016/j.ejca.2005.06.004. PubMed DOI
Chandrasekara A., Shahidi F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods. 2011;3:159–170. doi: 10.1016/j.jff.2011.03.008. DOI
Zhao G.-R., Xiang Z.-J., Ye T.-X., Yuan Y.-J., Guo Z.-X. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 2006;99:767–774. doi: 10.1016/j.foodchem.2005.09.002. DOI
Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 million Cancer Deaths in 2018. [(accessed on 29 July 2020)]. Available online: https://www.iarc.fr/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/
Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018;3:7. doi: 10.1038/s41392-017-0004-3. PubMed DOI PMC
Sodngam S., Sawadsitang S., Suwannasai N., Mongkolthanaruk W. Chemical constituents, and their cytotoxicity, of the rare wood decaying fungus Xylaria humosa. Nat. Prod. Commun. 2014;9:157–158. doi: 10.1177/1934578X1400900205. PubMed DOI
Sawadsitang S., Mongkolthanaruk W., Suwannasai N., Sodngam S. Antimalarial and cytotoxic constituents of Xylaria cf. cubensis PK108. Nat. Prod. Res. 2015;29:2033–2036. doi: 10.1080/14786419.2015.1017724. PubMed DOI
Sawadsitang S., Suwannasai N., Mongkolthanaruk W., Ahmadi P., McCloskey S. A new amino amidine derivative from the wood-decaying fungus Xylaria cf. cubensis SWUF08-86. Nat. Prod. Res. 2018;32:2260–2267. doi: 10.1080/14786419.2017.1405414. PubMed DOI
Hu D., Li M. Three New Ergot Alkaloids from the Fruiting Bodies of Xylaria nigripes (Kl.) Sacc. Chem. Biodivers. 2017;14:e1600173. doi: 10.1002/cbdv.201600173. PubMed DOI
Cong G., Jun L., Xia L., Lin M., XiaoHong Y. Recent advances in the studies of chemical compositions and bioactivities of the genus Xylaria. Mycosystema. 2016;35:767–781.
Macías-Rubalcava M.L., Sánchez-Fernández R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017;33:15. doi: 10.1007/s11274-016-2174-5. PubMed DOI
Rogers J.D., Ju Y.-M., Lehmann J. Some Xylaria Species on Termite Nests. Mycologia. 2005;97:914–923. doi: 10.1080/15572536.2006.11832783. PubMed DOI
Ju Y.-M., Hsieh H.-M. Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia. 2007;99:936–957. doi: 10.1080/15572536.2007.11832525. PubMed DOI
Okane I., Nakagiri A. Taxonomy of an anamorphic xylariaceous fungus from a termite nest found together with Xylaria angulosa. Mycoscience. 2007;48:240–249. doi: 10.1007/S10267-007-0361-9. DOI
Hsieh H.M., Lin C.R., Fang M.J., Rogers J.D., Fournier J., Lechat C., Ju Y.M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010;54:957–969. doi: 10.1016/j.ympev.2009.12.015. PubMed DOI
Wangsawat N., Ju Y.-M., Phosri C., Whalley A.J.S., Suwannasai N. Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand. Biology. 2021;10:575. doi: 10.3390/biology10070575. PubMed DOI PMC
Lin Y., Wang X.Y., Ye R., Hu W.H., Sun S.C., Jiao H.J., Song X.H., Yuan Z.Z., Zheng Y.Y., Zheng G.Q., et al. Efficacy and safety of Wuling capsule, a single herbal formula, in Chinese subjects with insomnia: A multicenter, randomized, double-blind, placebo-controlled trial. J. Ethnopharmacol. 2013;145:320–327. doi: 10.1016/j.jep.2012.11.009. PubMed DOI
Ko H.J., Song A., Lai M.N., Ng L.T. Antioxidant and antiradical activities of Wu Ling Shen in a cell free system. Am. J. Chin. Med. 2009;37:815–828. doi: 10.1142/S0192415X09007260. PubMed DOI
Chang J.C., Hsiao G., Lin R.K., Kuo Y.H., Ju Y.M., Lee T.H. Bioactive Constituents from the Termite Nest-Derived Medicinal Fungus Xylaria nigripes. J. Nat. Prod. 2017;80:38–44. doi: 10.1021/acs.jnatprod.6b00249. PubMed DOI
Chen M.-C., Wang G.-J., Kuo Y.-H., Chiang Y.-R., Cho T.-Y., Ju Y.-M., Lee T.-H. Isoprenyl phenolic ethers from the termite nest-derived medicinal fungus Xylaria fimbriata. J. Food Drug. Anal. 2019;27:111–117. doi: 10.1016/j.jfda.2018.05.007. PubMed DOI PMC
Xiang Y., Haixia W., Lijuan M., Yanduo T. Isolation, purification and identification of antioxidants from Lepidium latifolium extracts. Med. Chem. Res. 2018;27:37–45. doi: 10.1007/s00044-017-2042-3. DOI
Almeida M.M.B., de Sousa P.H.M., Arriaga Â.M.C., do Prado G.M., de Magalhães C.E.C., Maia G.A., de Lemos T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011;44:2155–2159. doi: 10.1016/j.foodres.2011.03.051. DOI
Rusu M.E., Gheldiu A.-M., Mocan A., Moldovan C., Popa D.-S., Tomuta I., Vlase L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules. 2018;23:2814. doi: 10.3390/molecules23112814. PubMed DOI PMC
Guetchueng S.T., Nahar L., James Ritchie K., Daud Ismail F.M., Dempster N., Robert Evans A., Dey Sarker S. Four new neo-clerodane diterpenes from the stem bark of Croton oligandrus. Nat. Prod. Res. 2021;35:298–304. doi: 10.1080/14786419.2019.1628745. PubMed DOI
Khan K.M., Nahar L., Mannan A., Arfan M., Khan G.A., Al-Groshi A., Evans A., Dempster N.M., Ismail F.M.D., Sarker S.D. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines. Pharmacogn. Mag. 2018;13:S890–S894. doi: 10.4103/pm.pm_136_17. PubMed DOI PMC
Hu F., Lu R., Huang B., Liang M. Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia. 2004;75:14–23. doi: 10.1016/j.fitote.2003.07.003. PubMed DOI
Siriwach R., Kinoshita H., Kitani S., Igarashi Y., Pansuksan K., Panbangred W., Nihira T. Xylaropyrone, a new γ-pyrone from the endophytic fungus Xylaria feejeensis MU18. J. Antibiot. 2011;64:217–219. doi: 10.1038/ja.2010.160. PubMed DOI
Yan S., Li S., Wu W., Zhao F., Bao L., Ding R., Gao H., Wen H.A., Song F., Liu H.W. Terpenoid and phenolic metabolites from the fungus Xylaria sp. associated with termite nests. Chem. Biodivers. 2011;8:1689–1700. doi: 10.1002/cbdv.201100026. PubMed DOI
Li M., Xiong J., Huang Y., Wang L.-J., Tang Y., Yang G.-X., Liu X.-H., Wei B.-G., Fan H., Zhao Y., et al. Xylapyrrosides A and B, two rare sugar-morpholine spiroketal pyrrole-derived alkaloids from Xylaria nigripes: Isolation, complete structure elucidation, and total syntheses. Tetrahedron. 2015;71:5285–5295. doi: 10.1016/j.tet.2015.06.020. DOI
Cho T.-Y., Wang G.-J., Ju Y.-M., Chen M.-C., Lee T.-H. Chemical Constituents from Termite-associated Xylaria acuminatilongissima YMJ623. J. Chin. Chem. Soc. 2016;63:404–409. doi: 10.1002/jccs.201500525. DOI
Binsan W., Benjakul S., Visessanguan W., Roytrakul S., Tanaka M., Kishimura H. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei) Food Chem. 2008;106:185–193. doi: 10.1016/j.foodchem.2007.05.065. DOI
Divate R.D., Wang C.-C., Chou S.-T., Chang C.-T., Wang P.-M., Chung Y.-C. Production of Xylaria nigripes-fermented grains by solid-state fermentation and an assessment of their resulting bioactivity. LWT-Food Sci. Technol. 2017;81:18–25. doi: 10.1016/j.lwt.2017.03.017. DOI
Liu X., Dong M., Chen X., Jiang M., Lv X., Yan G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007;105:548–554. doi: 10.1016/j.foodchem.2007.04.008. DOI
Divate R.D., Wang C.-C., Chou S.-T., Chang C.-T., Wang P.-M., Chung Y.-C. Using wheat bran and soybean meal as solid state fermentation substances for the production of Xylaria nigripes with bioactivities. J. Taiwan Inst. Chem. Eng. 2017;70:127–133. doi: 10.1016/j.jtice.2016.11.003. DOI
Song F., Wu S.H., Zhai Y.Z., Xuan Q.C., Wang T. Secondary metabolites from the genus Xylaria and their bioactivities. Chem. Biodivers. 2014;11:673–694. doi: 10.1002/cbdv.201200286. PubMed DOI
Becker K., Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J. Antibiot. 2021;74:1–23. doi: 10.1038/s41429-020-00376-0. PubMed DOI PMC
McCloskey S., Noppawan S., Mongkolthanaruk W., Suwannasai N., Senawong T., Prawat U. A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Nat. Prod. Res. 2017;31:1422–1430. doi: 10.1080/14786419.2016.1258559. PubMed DOI
Gu W., Ding H. Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin. Chem. Lett. 2008;19:1323–1326. doi: 10.1016/j.cclet.2008.09.006. DOI
Mahavorasirikul W., Viyanant V., Chaijaroenkul W., Itharat A., Na-Bangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement. Altern. Med. 2010;10:55. doi: 10.1186/1472-6882-10-55. PubMed DOI PMC
Liu J., He Y., Zhang D., Cai Y., Zhang C., Zhang P., Zhu H., Xu N., Liang S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol. Med. Rep. 2017;16:2595–2603. doi: 10.3892/mmr.2017.6879. PubMed DOI PMC
Stadler M., Tichy H.-V., Katsiou E., Hellwig V. Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycol. Prog. 2003;2:95–122. doi: 10.1007/s11557-006-0048-1. DOI
Liu G.-K., Li N., Zhang Y.-J., Wang J.-R. LC/MS fingerprint and simultaneous quantification of main bioactive compounds in Polyporus umbellatus (Pers.) Fr. from different regions and developmental stages. Microchem. J. 2019;144:351–360. doi: 10.1016/j.microc.2018.08.015. DOI
de Jesus J., Bunch J., Verbeck G., Webb R.P., Costa C., Goodwin R.J.A., Bailey M.J. Application of Various Normalization Methods for Microscale Analysis of Tissues Using Direct Analyte Probed Nanoextraction. Anal. Chem. 2018;90:12094–12100. doi: 10.1021/acs.analchem.8b03016. PubMed DOI
Edwards R.L., Maitland D.J., Whalley A.J.S. Metabolites of the higher fungi. Part 26. Cubensic acid, 3,7,11,15-tetrahydroxy-18-(hydroxymethyl)-2,4,6,10,14,16,20-heptamethyldocosa-4E,8E,12E,16E-tetraenoic acid, a novel polysubstituted C22 fatty acid from the fungus Xylaria cubensis (Mont.) Fr. with substituents and substitution pattern similar to the macrolide antibiotics. J. Chem. Soc. Perkin Trans. 1. 1991:1411–1417. doi: 10.1039/P19910001411. DOI
Whalley A.J.S., Edwards R.L. Secondary metabolites and systematic arrangements in the Xylariaceae. Can. J. Bot. 1995;73((Suppl. 1)):S802–S810. doi: 10.1139/b95-325. DOI
Adeboya M., Edwards R.L., Læssøe T., Maitland D.J., Whalley A.J.S. Metabolites of the higher fungi. Part 28. Globoscinic acid and globoscin, a labile acid-lactone system from Xylaria globosa and Xylaria obovate. J. Chem. Soc. Perkin Trans. 1. 1995:2067–2072. doi: 10.1039/P19950002067. DOI
Adeboya M.O., Edwards R.L., Læssøe T., Maitland D.J., Shields L., Whalley A.J.S. Metabolites of the higher fungi. Part 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. a spirocyclohexadienone, a depsidone and three diphenyl ethers: Keys in the depsidone biosynthetic pathway from a member of the fungus genus Xylaria. J. Chem. Soc. Perkin Trans. 1. 1996:1419–1425. doi: 10.1039/P19960001419. DOI
Edwards R.L., Maitland D.J., Oliver C.L., Pacey M.S., Shields L., Whalley A.J.S. Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.) J. Chem. Soc. Perkin Trans. 1. 1999:715–719. doi: 10.1039/a808845d. DOI
Guo C., Wu P., Xue J., Li H., Wei X. Xylaropyrones B and C, new γ-pyrones from the endophytic fungus Xylaria sp. SC1440. Nat. Prod. Res. 2018;32:1525–1531. doi: 10.1080/14786419.2017.1385013. PubMed DOI
Tang J., Wang X.C., Hu Y., Ngo H.H., Li Y., Zhang Y. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour. Bioresour. Technol. 2017;236:164–173. doi: 10.1016/j.biortech.2017.03.186. PubMed DOI
Li M., Chen X., Che X., Zhang H., Wu L.-P., Du H., Chen G.-Q. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab. Eng. 2019;52:253–262. doi: 10.1016/j.ymben.2018.12.007. PubMed DOI
Guo H., Kreuzenbeck N.B., Otani S., Garcia-Altares M., Dahse H.-M., Weigel C., Aanen D.K., Hertweck C., Poulsen M., Beemelmanns C. Pseudoxylallemycins A–F, Cyclic Tetrapeptides with Rare Allenyl Modifications Isolated from Pseudoxylaria sp. X802: A Competitor of Fungus-Growing Termite Cultivars. Org. Lett. 2016;18:3338–3341. doi: 10.1021/acs.orglett.6b01437. PubMed DOI
Helaly S.E., Thongbai B., Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 2018;35:992–1014. doi: 10.1039/C8NP00010G. PubMed DOI
Jirakkakul J., Punya J., Pongpattanakitshote S., Paungmoung P., Vorapreeda N., Tachaleat A., Klomnara C., Tanticharoen M., Cheevadhanarak S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology. 2008;154:995–1006. doi: 10.1099/mic.0.2007/013995-0. PubMed DOI
Abate D., Abraham W.-R., Meyer H. Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry. 1997;44:1443–1448. doi: 10.1016/S0031-9422(96)00780-7. DOI
Zhang Q., Huang Z.P., Zhao Y.Y., Zhao Q., Chen J.H., Ma W.G., Zhang X.M. Six 19,20-epoxycytochalasans from endophytic Diaporthe sp. RJ-47. Nat. Prod. Res. 2020:1–6. doi: 10.1080/14786419.2020.1859504. PubMed DOI
Kumarihamy M., Ferreira D., Croom E.M., Jr., Sahu R., Tekwani B.L., Duke S.O., Khan S., Techen N., Nanayakkara N.P.D. Antiplasmodial and Cytotoxic Cytochalasins from an Endophytic Fungus, Nemania sp. UM10M, Isolated from a Diseased Torreya taxifolia Leaf. Molecules. 2019;24:777. doi: 10.3390/molecules24040777. PubMed DOI PMC
Chao W.-W., Lin B.-F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian) Chin. Med. 2010;5:17. doi: 10.1186/1749-8546-5-17. PubMed DOI PMC
Alam M.A., Subhan N., Rahman M.M., Uddin S.J., Reza H.M., Sarker S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014;5:404–417. doi: 10.3945/an.113.005603. PubMed DOI PMC
Zhao Z., Zheng N., Wang L., Hou Y., Zhou X., Wang Z. Rottlerin exhibits antitumor activity via down-regulation of TAZ in non-small cell lung cancer. Oncotarget. 2017;8:7827–7838. doi: 10.18632/oncotarget.13974. PubMed DOI PMC
Wang L., Hou Y., Yin X., Su J., Zhao Z., Ye X., Zhou X., Zhou L., Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget. 2016;7:69770–69782. doi: 10.18632/oncotarget.11974. PubMed DOI PMC
Corrêa W.R., Serain A.F., Aranha Netto L., Marinho J.V.N., Arena A.C., de Figueiredo Santana Aquino D., Kuraoka-Oliveira Â.M., Júnior A.J., Bernal L.P.T., Kassuya C.A.L., et al. Anti-Inflammatory and Antioxidant Properties of the Extract, Tiliroside, and Patuletin 3-O-β-D-Glucopyranoside from Pfaffia townsendii (Amaranthaceae) Evid.-Based Complement. Altern. Med. 2018;2018:6057579. doi: 10.1155/2018/6057579. PubMed DOI PMC
Nowak R. Separation and Quantification of Tiliroside from Plant Extracts by SPE/RP-HPLC. Pharm. Biol. 2003;41:627–630. doi: 10.1080/13880200390502559. DOI
Üçel I.U., Can Ö.D., Demir Özkay Ü., Ulupinar E. Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats. Pharmacol. Biochem. Behav. 2020;190:172858. doi: 10.1016/j.pbb.2020.172858. PubMed DOI
Pattnaik J.i., Deepthi R.A., Dua S., Padhan P., Ravan J.R. Role of Tofisopam in Post COVID Neuro-psychiatric Sequelae: A Case Series. Indian J. Psychol. Med. 2021;43:174–176. doi: 10.1177/0253717621994285. PubMed DOI PMC