Antioxidant Activity and Cytotoxicity against Cancer Cell Lines of the Extracts from Novel Xylaria Species Associated with Termite Nests and LC-MS Analysis

. 2021 Sep 29 ; 10 (10) : . [epub] 20210929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34679692

Grantová podpora
PHD/0218/2559 The Royal Golden Jubilee Ph.D. programme, Thailand
No. CZ.02.1.01/0.0/0.0/16_019/0000868 The European Regional Development Fund-Project ENOCH

Xylaria species associated with termite nests or soil have been considered rare species in nature and the few which have been reported upon have been found to act as a rich source of bioactive metabolites. This study evaluated 10 ethyl acetate extracts of five new Xylaria species associated with termite nests or soil for their antioxidant activity, and cytotoxicity against different cancer and normal cell lines. DPPH and ABTS radical scavenging activities of the extracts demonstrated strong capacity with low IC50 values. The highest observed activities belonged to X. vinacea SWUF18-2.3 having IC50 values of 0.194 ± 0.031 mg/mL for DPPH assay and 0.020 ± 0.004 mg/mL for ABTS assay. Total phenolic content ranged from 0.826 ± 0.123 to 3.629 ± 0.381 g GAE/g crude extract which correlated with antioxidant activities. The high total phenolic content could contribute to the high antioxidant activities. Cytotoxicity was recorded against A549, HepG2, HeLa and PNT2 and resulted in broad spectrum to specific activity depending on the cell lines. The highest activities were observed with X. subintraflava SWUF16-11.1 which resulted in 11.15 ± 0.32 to 13.17 ± 2.37% cell viability at a concentration of 100 µg/mL. Moreover, LC-MS fingerprints indicated over 61 peaks from all isolates. There were 18 identified and 43 unidentified compounds compared to mass databases. The identified compounds were from various groups of diterpenoids, diterpenes, cytochalasin, flavones, flavonoids, polyphenols, steroids and derivatives, triterpenoids and tropones. These results indicate that Xylaria spp. has abundant secondary metabolites that could be further explored for their therapeutic properties.

Zobrazit více v PubMed

Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI

Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC

Ferreira I.C., Barros L., Abreu R.M. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI

Collins A.R. Antioxidant intervention as a route to cancer prevention. Eur. J. Cancer. 2005;41:1923–1930. doi: 10.1016/j.ejca.2005.06.004. PubMed DOI

Chandrasekara A., Shahidi F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods. 2011;3:159–170. doi: 10.1016/j.jff.2011.03.008. DOI

Zhao G.-R., Xiang Z.-J., Ye T.-X., Yuan Y.-J., Guo Z.-X. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 2006;99:767–774. doi: 10.1016/j.foodchem.2005.09.002. DOI

Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 million Cancer Deaths in 2018. [(accessed on 29 July 2020)]. Available online: https://www.iarc.fr/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/

Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018;3:7. doi: 10.1038/s41392-017-0004-3. PubMed DOI PMC

Sodngam S., Sawadsitang S., Suwannasai N., Mongkolthanaruk W. Chemical constituents, and their cytotoxicity, of the rare wood decaying fungus Xylaria humosa. Nat. Prod. Commun. 2014;9:157–158. doi: 10.1177/1934578X1400900205. PubMed DOI

Sawadsitang S., Mongkolthanaruk W., Suwannasai N., Sodngam S. Antimalarial and cytotoxic constituents of Xylaria cf. cubensis PK108. Nat. Prod. Res. 2015;29:2033–2036. doi: 10.1080/14786419.2015.1017724. PubMed DOI

Sawadsitang S., Suwannasai N., Mongkolthanaruk W., Ahmadi P., McCloskey S. A new amino amidine derivative from the wood-decaying fungus Xylaria cf. cubensis SWUF08-86. Nat. Prod. Res. 2018;32:2260–2267. doi: 10.1080/14786419.2017.1405414. PubMed DOI

Hu D., Li M. Three New Ergot Alkaloids from the Fruiting Bodies of Xylaria nigripes (Kl.) Sacc. Chem. Biodivers. 2017;14:e1600173. doi: 10.1002/cbdv.201600173. PubMed DOI

Cong G., Jun L., Xia L., Lin M., XiaoHong Y. Recent advances in the studies of chemical compositions and bioactivities of the genus Xylaria. Mycosystema. 2016;35:767–781.

Macías-Rubalcava M.L., Sánchez-Fernández R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017;33:15. doi: 10.1007/s11274-016-2174-5. PubMed DOI

Rogers J.D., Ju Y.-M., Lehmann J. Some Xylaria Species on Termite Nests. Mycologia. 2005;97:914–923. doi: 10.1080/15572536.2006.11832783. PubMed DOI

Ju Y.-M., Hsieh H.-M. Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia. 2007;99:936–957. doi: 10.1080/15572536.2007.11832525. PubMed DOI

Okane I., Nakagiri A. Taxonomy of an anamorphic xylariaceous fungus from a termite nest found together with Xylaria angulosa. Mycoscience. 2007;48:240–249. doi: 10.1007/S10267-007-0361-9. DOI

Hsieh H.M., Lin C.R., Fang M.J., Rogers J.D., Fournier J., Lechat C., Ju Y.M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010;54:957–969. doi: 10.1016/j.ympev.2009.12.015. PubMed DOI

Wangsawat N., Ju Y.-M., Phosri C., Whalley A.J.S., Suwannasai N. Twelve New Taxa of Xylaria Associated with Termite Nests and Soil from Northeast Thailand. Biology. 2021;10:575. doi: 10.3390/biology10070575. PubMed DOI PMC

Lin Y., Wang X.Y., Ye R., Hu W.H., Sun S.C., Jiao H.J., Song X.H., Yuan Z.Z., Zheng Y.Y., Zheng G.Q., et al. Efficacy and safety of Wuling capsule, a single herbal formula, in Chinese subjects with insomnia: A multicenter, randomized, double-blind, placebo-controlled trial. J. Ethnopharmacol. 2013;145:320–327. doi: 10.1016/j.jep.2012.11.009. PubMed DOI

Ko H.J., Song A., Lai M.N., Ng L.T. Antioxidant and antiradical activities of Wu Ling Shen in a cell free system. Am. J. Chin. Med. 2009;37:815–828. doi: 10.1142/S0192415X09007260. PubMed DOI

Chang J.C., Hsiao G., Lin R.K., Kuo Y.H., Ju Y.M., Lee T.H. Bioactive Constituents from the Termite Nest-Derived Medicinal Fungus Xylaria nigripes. J. Nat. Prod. 2017;80:38–44. doi: 10.1021/acs.jnatprod.6b00249. PubMed DOI

Chen M.-C., Wang G.-J., Kuo Y.-H., Chiang Y.-R., Cho T.-Y., Ju Y.-M., Lee T.-H. Isoprenyl phenolic ethers from the termite nest-derived medicinal fungus Xylaria fimbriata. J. Food Drug. Anal. 2019;27:111–117. doi: 10.1016/j.jfda.2018.05.007. PubMed DOI PMC

Xiang Y., Haixia W., Lijuan M., Yanduo T. Isolation, purification and identification of antioxidants from Lepidium latifolium extracts. Med. Chem. Res. 2018;27:37–45. doi: 10.1007/s00044-017-2042-3. DOI

Almeida M.M.B., de Sousa P.H.M., Arriaga Â.M.C., do Prado G.M., de Magalhães C.E.C., Maia G.A., de Lemos T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011;44:2155–2159. doi: 10.1016/j.foodres.2011.03.051. DOI

Rusu M.E., Gheldiu A.-M., Mocan A., Moldovan C., Popa D.-S., Tomuta I., Vlase L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules. 2018;23:2814. doi: 10.3390/molecules23112814. PubMed DOI PMC

Guetchueng S.T., Nahar L., James Ritchie K., Daud Ismail F.M., Dempster N., Robert Evans A., Dey Sarker S. Four new neo-clerodane diterpenes from the stem bark of Croton oligandrus. Nat. Prod. Res. 2021;35:298–304. doi: 10.1080/14786419.2019.1628745. PubMed DOI

Khan K.M., Nahar L., Mannan A., Arfan M., Khan G.A., Al-Groshi A., Evans A., Dempster N.M., Ismail F.M.D., Sarker S.D. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines. Pharmacogn. Mag. 2018;13:S890–S894. doi: 10.4103/pm.pm_136_17. PubMed DOI PMC

Hu F., Lu R., Huang B., Liang M. Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia. 2004;75:14–23. doi: 10.1016/j.fitote.2003.07.003. PubMed DOI

Siriwach R., Kinoshita H., Kitani S., Igarashi Y., Pansuksan K., Panbangred W., Nihira T. Xylaropyrone, a new γ-pyrone from the endophytic fungus Xylaria feejeensis MU18. J. Antibiot. 2011;64:217–219. doi: 10.1038/ja.2010.160. PubMed DOI

Yan S., Li S., Wu W., Zhao F., Bao L., Ding R., Gao H., Wen H.A., Song F., Liu H.W. Terpenoid and phenolic metabolites from the fungus Xylaria sp. associated with termite nests. Chem. Biodivers. 2011;8:1689–1700. doi: 10.1002/cbdv.201100026. PubMed DOI

Li M., Xiong J., Huang Y., Wang L.-J., Tang Y., Yang G.-X., Liu X.-H., Wei B.-G., Fan H., Zhao Y., et al. Xylapyrrosides A and B, two rare sugar-morpholine spiroketal pyrrole-derived alkaloids from Xylaria nigripes: Isolation, complete structure elucidation, and total syntheses. Tetrahedron. 2015;71:5285–5295. doi: 10.1016/j.tet.2015.06.020. DOI

Cho T.-Y., Wang G.-J., Ju Y.-M., Chen M.-C., Lee T.-H. Chemical Constituents from Termite-associated Xylaria acuminatilongissima YMJ623. J. Chin. Chem. Soc. 2016;63:404–409. doi: 10.1002/jccs.201500525. DOI

Binsan W., Benjakul S., Visessanguan W., Roytrakul S., Tanaka M., Kishimura H. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei) Food Chem. 2008;106:185–193. doi: 10.1016/j.foodchem.2007.05.065. DOI

Divate R.D., Wang C.-C., Chou S.-T., Chang C.-T., Wang P.-M., Chung Y.-C. Production of Xylaria nigripes-fermented grains by solid-state fermentation and an assessment of their resulting bioactivity. LWT-Food Sci. Technol. 2017;81:18–25. doi: 10.1016/j.lwt.2017.03.017. DOI

Liu X., Dong M., Chen X., Jiang M., Lv X., Yan G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007;105:548–554. doi: 10.1016/j.foodchem.2007.04.008. DOI

Divate R.D., Wang C.-C., Chou S.-T., Chang C.-T., Wang P.-M., Chung Y.-C. Using wheat bran and soybean meal as solid state fermentation substances for the production of Xylaria nigripes with bioactivities. J. Taiwan Inst. Chem. Eng. 2017;70:127–133. doi: 10.1016/j.jtice.2016.11.003. DOI

Song F., Wu S.H., Zhai Y.Z., Xuan Q.C., Wang T. Secondary metabolites from the genus Xylaria and their bioactivities. Chem. Biodivers. 2014;11:673–694. doi: 10.1002/cbdv.201200286. PubMed DOI

Becker K., Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J. Antibiot. 2021;74:1–23. doi: 10.1038/s41429-020-00376-0. PubMed DOI PMC

McCloskey S., Noppawan S., Mongkolthanaruk W., Suwannasai N., Senawong T., Prawat U. A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Nat. Prod. Res. 2017;31:1422–1430. doi: 10.1080/14786419.2016.1258559. PubMed DOI

Gu W., Ding H. Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin. Chem. Lett. 2008;19:1323–1326. doi: 10.1016/j.cclet.2008.09.006. DOI

Mahavorasirikul W., Viyanant V., Chaijaroenkul W., Itharat A., Na-Bangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement. Altern. Med. 2010;10:55. doi: 10.1186/1472-6882-10-55. PubMed DOI PMC

Liu J., He Y., Zhang D., Cai Y., Zhang C., Zhang P., Zhu H., Xu N., Liang S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol. Med. Rep. 2017;16:2595–2603. doi: 10.3892/mmr.2017.6879. PubMed DOI PMC

Stadler M., Tichy H.-V., Katsiou E., Hellwig V. Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycol. Prog. 2003;2:95–122. doi: 10.1007/s11557-006-0048-1. DOI

Liu G.-K., Li N., Zhang Y.-J., Wang J.-R. LC/MS fingerprint and simultaneous quantification of main bioactive compounds in Polyporus umbellatus (Pers.) Fr. from different regions and developmental stages. Microchem. J. 2019;144:351–360. doi: 10.1016/j.microc.2018.08.015. DOI

de Jesus J., Bunch J., Verbeck G., Webb R.P., Costa C., Goodwin R.J.A., Bailey M.J. Application of Various Normalization Methods for Microscale Analysis of Tissues Using Direct Analyte Probed Nanoextraction. Anal. Chem. 2018;90:12094–12100. doi: 10.1021/acs.analchem.8b03016. PubMed DOI

Edwards R.L., Maitland D.J., Whalley A.J.S. Metabolites of the higher fungi. Part 26. Cubensic acid, 3,7,11,15-tetrahydroxy-18-(hydroxymethyl)-2,4,6,10,14,16,20-heptamethyldocosa-4E,8E,12E,16E-tetraenoic acid, a novel polysubstituted C22 fatty acid from the fungus Xylaria cubensis (Mont.) Fr. with substituents and substitution pattern similar to the macrolide antibiotics. J. Chem. Soc. Perkin Trans. 1. 1991:1411–1417. doi: 10.1039/P19910001411. DOI

Whalley A.J.S., Edwards R.L. Secondary metabolites and systematic arrangements in the Xylariaceae. Can. J. Bot. 1995;73((Suppl. 1)):S802–S810. doi: 10.1139/b95-325. DOI

Adeboya M., Edwards R.L., Læssøe T., Maitland D.J., Whalley A.J.S. Metabolites of the higher fungi. Part 28. Globoscinic acid and globoscin, a labile acid-lactone system from Xylaria globosa and Xylaria obovate. J. Chem. Soc. Perkin Trans. 1. 1995:2067–2072. doi: 10.1039/P19950002067. DOI

Adeboya M.O., Edwards R.L., Læssøe T., Maitland D.J., Shields L., Whalley A.J.S. Metabolites of the higher fungi. Part 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. a spirocyclohexadienone, a depsidone and three diphenyl ethers: Keys in the depsidone biosynthetic pathway from a member of the fungus genus Xylaria. J. Chem. Soc. Perkin Trans. 1. 1996:1419–1425. doi: 10.1039/P19960001419. DOI

Edwards R.L., Maitland D.J., Oliver C.L., Pacey M.S., Shields L., Whalley A.J.S. Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.) J. Chem. Soc. Perkin Trans. 1. 1999:715–719. doi: 10.1039/a808845d. DOI

Guo C., Wu P., Xue J., Li H., Wei X. Xylaropyrones B and C, new γ-pyrones from the endophytic fungus Xylaria sp. SC1440. Nat. Prod. Res. 2018;32:1525–1531. doi: 10.1080/14786419.2017.1385013. PubMed DOI

Tang J., Wang X.C., Hu Y., Ngo H.H., Li Y., Zhang Y. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour. Bioresour. Technol. 2017;236:164–173. doi: 10.1016/j.biortech.2017.03.186. PubMed DOI

Li M., Chen X., Che X., Zhang H., Wu L.-P., Du H., Chen G.-Q. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab. Eng. 2019;52:253–262. doi: 10.1016/j.ymben.2018.12.007. PubMed DOI

Guo H., Kreuzenbeck N.B., Otani S., Garcia-Altares M., Dahse H.-M., Weigel C., Aanen D.K., Hertweck C., Poulsen M., Beemelmanns C. Pseudoxylallemycins A–F, Cyclic Tetrapeptides with Rare Allenyl Modifications Isolated from Pseudoxylaria sp. X802: A Competitor of Fungus-Growing Termite Cultivars. Org. Lett. 2016;18:3338–3341. doi: 10.1021/acs.orglett.6b01437. PubMed DOI

Helaly S.E., Thongbai B., Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 2018;35:992–1014. doi: 10.1039/C8NP00010G. PubMed DOI

Jirakkakul J., Punya J., Pongpattanakitshote S., Paungmoung P., Vorapreeda N., Tachaleat A., Klomnara C., Tanticharoen M., Cheevadhanarak S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology. 2008;154:995–1006. doi: 10.1099/mic.0.2007/013995-0. PubMed DOI

Abate D., Abraham W.-R., Meyer H. Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry. 1997;44:1443–1448. doi: 10.1016/S0031-9422(96)00780-7. DOI

Zhang Q., Huang Z.P., Zhao Y.Y., Zhao Q., Chen J.H., Ma W.G., Zhang X.M. Six 19,20-epoxycytochalasans from endophytic Diaporthe sp. RJ-47. Nat. Prod. Res. 2020:1–6. doi: 10.1080/14786419.2020.1859504. PubMed DOI

Kumarihamy M., Ferreira D., Croom E.M., Jr., Sahu R., Tekwani B.L., Duke S.O., Khan S., Techen N., Nanayakkara N.P.D. Antiplasmodial and Cytotoxic Cytochalasins from an Endophytic Fungus, Nemania sp. UM10M, Isolated from a Diseased Torreya taxifolia Leaf. Molecules. 2019;24:777. doi: 10.3390/molecules24040777. PubMed DOI PMC

Chao W.-W., Lin B.-F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian) Chin. Med. 2010;5:17. doi: 10.1186/1749-8546-5-17. PubMed DOI PMC

Alam M.A., Subhan N., Rahman M.M., Uddin S.J., Reza H.M., Sarker S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014;5:404–417. doi: 10.3945/an.113.005603. PubMed DOI PMC

Zhao Z., Zheng N., Wang L., Hou Y., Zhou X., Wang Z. Rottlerin exhibits antitumor activity via down-regulation of TAZ in non-small cell lung cancer. Oncotarget. 2017;8:7827–7838. doi: 10.18632/oncotarget.13974. PubMed DOI PMC

Wang L., Hou Y., Yin X., Su J., Zhao Z., Ye X., Zhou X., Zhou L., Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget. 2016;7:69770–69782. doi: 10.18632/oncotarget.11974. PubMed DOI PMC

Corrêa W.R., Serain A.F., Aranha Netto L., Marinho J.V.N., Arena A.C., de Figueiredo Santana Aquino D., Kuraoka-Oliveira Â.M., Júnior A.J., Bernal L.P.T., Kassuya C.A.L., et al. Anti-Inflammatory and Antioxidant Properties of the Extract, Tiliroside, and Patuletin 3-O-β-D-Glucopyranoside from Pfaffia townsendii (Amaranthaceae) Evid.-Based Complement. Altern. Med. 2018;2018:6057579. doi: 10.1155/2018/6057579. PubMed DOI PMC

Nowak R. Separation and Quantification of Tiliroside from Plant Extracts by SPE/RP-HPLC. Pharm. Biol. 2003;41:627–630. doi: 10.1080/13880200390502559. DOI

Üçel I.U., Can Ö.D., Demir Özkay Ü., Ulupinar E. Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats. Pharmacol. Biochem. Behav. 2020;190:172858. doi: 10.1016/j.pbb.2020.172858. PubMed DOI

Pattnaik J.i., Deepthi R.A., Dua S., Padhan P., Ravan J.R. Role of Tofisopam in Post COVID Neuro-psychiatric Sequelae: A Case Series. Indian J. Psychol. Med. 2021;43:174–176. doi: 10.1177/0253717621994285. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...