• This record comes from PubMed

Spirostanol Saponins from Flowers of Allium Porrum and Related Compounds Indicating Cytotoxic Activity and Affecting Nitric Oxide Production Inhibitory Effect in Peritoneal Macrophages

. 2021 Oct 29 ; 26 (21) : . [epub] 20211029

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 34770942
PubMed Central PMC8587756
DOI 10.3390/molecules26216533
PII: molecules26216533
Knihovny.cz E-resources

Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3β, 6β, 25R)-2,6-dihydroxyspirostan-3-yl β-D-glucopyranosyl-(1 → 3)-β-D-glucopranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl]-(1 → 4)-β-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.

See more in PubMed

Hostettmann K., Marston A. Book, Saponins. Chemistry and Pharmacology of Natural Products. Cambridge University Press; Cambridge, UK: 1995. pp. 287–306.

Waller G.R., Yamasaki K., editors. Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology. Volume 404 Springer; New York, NY, USA: 1996.

Harmatha J. Chemo-ecological role of spirostanol saponins in the interaction between plants and insects. In: Oleszek W., Marston A., editors. Book Saponins in Food, Feedstuffs and Medicinal Plants. Volume 45. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2000. pp. 129–141.

Lanzotti V. Bioactive saponins from Allium and Aster plants. Phytochem. Rev. 2005;4:95–110. doi: 10.1007/s11101-005-1254-1. DOI

Lanzotti V. Bioactive polar natural compounds from garlic and onions. Phytochem. Rev. 2012;11:179–196. doi: 10.1007/s11101-012-9247-3. DOI

Sobolewska D., Michalska K., Podolak I., Grabowska K. Steroidal saponins from the genus Allium. Phytochem. Rev. 2016;15:1–32. doi: 10.1007/s11101-014-9381-1. PubMed DOI PMC

Francis G., Kerem Z., Makkar H.P.S., Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002;88:587–605. doi: 10.1079/BJN2002725. PubMed DOI

Harmatha J., Vokáč K., Kmoníčková E., Zídek Z. Lack of interference of common phytoecdysteroids with production of nitric oxide by immune-activated mammalian macrophages. Steroids. 2008;73:466–471. doi: 10.1016/j.steroids.2007.12.014. PubMed DOI

Harmatha J., Buděšínský M., Vokáč K., Kostecká P., Kmoníčková E., Zídek Z. Trilobolide and related sesquiterpene lactones from Laser trilobum possessing immunobiological properties. Fitoterapia. 2013;89:157–166. doi: 10.1016/j.fitote.2013.05.025. PubMed DOI

Harmatha J., Vokáč K., Buděšínský M., Zídek Z., Kmoníčková E. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide. Fitoterapia. 2015;107:90–99. doi: 10.1016/j.fitote.2015.10.002. PubMed DOI

Harmatha J., Buděšínský M., Jurášek M., Zimmermann T., Drašar P., Zídek Z., Kmoníčková E., Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI

Arnault C., Harmatha J., Mauchamp B., Sláma K. Influence of allelochemical substances of the host plant (Allium porrum) on development and moulting of Acrolepiopsis assectella (Lepidoptera) In: Labeyrie V., Fabres G., Lachaise D., editors. Their Role as Selective Factor. Insects-Plants, Junk Publishers; Dordrecht, The Netherlands: 1987. pp. 249–255.

Harmatha J., Mauchamp B., Arnault C., Sláma K. Identification of a spirostane-type saponin in the flowers of leek with inhibitory effects on growth of leek-moth larvae. Biochem. Syst. Ecol. 1987;15:113–116. doi: 10.1016/0305-1978(87)90089-5. DOI

Arnault C., Mauchamp B. Ecdysis inhibition in Acrolepiopsis assectella larvae by digitoxin: Antagonistic effects of cholesterol. Experientia. 1985;41:1074–1077. doi: 10.1007/BF01952151. DOI

Harmatha J., Dinan L. Interaction of dimeric ecdysteroids, glycosidic ecdysteroid conjugates and ecdysis-disturbing saponins with the ecdysteroid receptor assessed by means of the Drosophila melanogaster B-II bioassay. In: Konopinska D., editor. Book Arthropods: Chemical, Physiological and Environmental Aspects. Wroclaw Technology University Press; Wroclaw, Poland: 2002. pp. 79–84.

Sata N., Matsunaga S., Fusetani N., Nushikawa H., Takamura S., Saito T. New antifungal and cytotoxic steroidal saponins from the bulbs of elephant garlic mutant. Biosci. Biotechnol. Biochem. 1998;62:1904–1911. doi: 10.1271/bbb.62.1904. PubMed DOI

Kelginbayev A.N., Gorovits M.B., Gorovits T.T., Abubakirov N.K. Allium steroid saponins and sapogenins IX—Structure of aginosid. Khim. Prir. Soedin. 1976;4:480–486.

Dinan L., Bourne P.C., Meng Y., Sarker S.D., Tolentino R.B. Whiting, Assessment of natural products in the Drosophila melanogaster BII cell bioassay for ecdysteroid agonist and antagonist activities. CMLS Cell. Mol. Life Sci. 2001;58:321–342. doi: 10.1007/PL00000859. PubMed DOI PMC

Carotenuto A., Fattorusso E., Lanzotti V., Magno S. Spirostanol saponins of Allium porrum L. Phytochemistry. 1999;51:1077–1082. doi: 10.1016/S0031-9422(98)00712-2. PubMed DOI

Fattorusso E., Lanzotti V., Taglialatela-Scafati O., Di Rosa M., Ianaro A. Cytotoxic saponins from bulbs of Allium porrum L. J. Agric. Food Chem. 2000;48:3455–3462. doi: 10.1021/jf000331v. PubMed DOI

Fattorusso E., Lanzotti V., Magno S., Taglialatela-Scafati O. Sapogenins of Allium porrum L. J. Agric. Food Chem. 1998;46:4904–4908. doi: 10.1021/jf980849n. DOI

Gvazava L.N., Skhirtladze A.V. Steroidal saponin from Allium porrum. Chem. Nat. Comp. 2017;53:1093–1095. doi: 10.1007/s10600-017-2208-8. DOI

Gvazava L.N., Skhirtladze A.V. Steroidal glycoside from Allium porrum. Chem. Nat. Comp. 2018;54:487–489. doi: 10.1007/s10600-018-2385-0. DOI

Maisashvili M.R., Kuchukhidze D.K., Kikoladze V.S., Gvazava L.N. Steroidal glycosides of gitogenin from Allium rotundum. Chem. Nat. Comp. 2012;48:86–90. doi: 10.1007/s10600-012-0164-x. DOI

Tolkacheva N.V., Shashkov A.S., Chirva V.Y. Steroidal glycosides from Allium cyrillii bulbs. Chem. Nat. Comp. 2012;48:272–275. doi: 10.1007/s10600-012-0219-z. DOI

Mimaki Y., Kuroda M., Fukasawa T., Sashida Y. Steroidal glycosides from bulbs of Allium jesdianum. J. Nat. Prod. 1999;62:194–197. doi: 10.1021/np980346b. PubMed DOI

Kawashima K., Minaki Y., Sashida Y. Steroidal saponins from the bulbs of Allium schubertii. Phytochemistry. 1993;32:1267–1272. doi: 10.1016/S0031-9422(00)95103-3. PubMed DOI

Kravets S.D., Vollerner Y.S., Gorovits M.B., Abubakirov N.K. Steroids of the spirostan and furostan series from plants of the genus Allium. Khim. Prir. Soed. 1990;26:359–373.

Selim S., Al Jaouni S. Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm. BMC Complemet. Altern. Med. 2015;15:301. doi: 10.1186/s12906-015-0836-8. PubMed DOI PMC

Carotenuto A., Fattorusso E., Lanzotti V., Magno S., De Feo V., Carnuccio R., D’Acquisto F. Porrigenins A and B, Novel Cytotoxic and Antiproliferative Sapogenins Isolated from Allium porrum. J. Nat. Prod. 1997;60:1003–1007. doi: 10.1021/np960657r. PubMed DOI

Rezgui A., Mitaine-Offer A.C., Paululat T., Delemasure S., Dutartre P., Lacaille-Dubois M.-A. Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia. 2014;93:121–125. doi: 10.1016/j.fitote.2013.12.018. PubMed DOI

Lafont R., Harmatha J., Marion-Poll F., Dinan L., Wilson I.D. The Ecdysone Handbook. 3rd ed. 2002. [(accessed on 20 September 2021)]. Continuously Updated. Available online: http://ecdybase.org/

Rodrigues Adao C., Pereira da Silva B., Wanderley Tinoco L., Paz Parente J. Haemolytic Activity and Immunological Adjuvant Effect of a New Steroidal Saponin from Allium ampeloprasum var. porrum. Chem. Biodivers. 2012;9:58–67. doi: 10.1002/cbdv.201100005. PubMed DOI

Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5:1487–1499. PubMed PMC

De Geyter E., Lambert E., Geelen D., Smagghe G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 2007;1:96–105.

Chaieb I. Saponins as Insecticides: A Review. Tunisian J. Plant Protect. 2010;5:39–50.

Singh B., Kaur A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. Food Sci. Technol. 2018;87:93–101. doi: 10.1016/j.lwt.2017.08.077. DOI

Barile E., Bonanomi G., Antignani V., Zolfaghari B., Sajjadi S.E., Scala F., Lanzotti V. Saponins from Allium minutiflorum with antifungal activity. Phytochemistry. 2007;68:596–603. doi: 10.1016/j.phytochem.2006.10.009. PubMed DOI

Lanzotti V., Barile E., Antignani V., Bonanomi G., Scala F. Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry. 2012;78:126–134. doi: 10.1016/j.phytochem.2012.03.009. PubMed DOI

Mostafa A., Sudisha J., El-Sayed M., Ito S., Ikeda T., Yamauchi N., Shigyo M. Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem. Lett. 2013;6:274–280. doi: 10.1016/j.phytol.2013.03.001. DOI

Sparg S.G., Light M.E., van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharm. 2004;94:219–243. doi: 10.1016/j.jep.2004.05.016. PubMed DOI

Wang Y., Li C., Xiang L., Huang W., He X. Spirostanol saponins from Chinese onion (Allium chinense) exert pronounced anti-inflammatory and anti-proliferative activities. J. Funcion. Foods. 2016;25:208–219. doi: 10.1016/j.jff.2016.06.005. DOI

Lacaille-Dubois M.-A. Bioactive saponins with cancer related and immunomodulatory activity: Recent developments. Stud. Nat. Prod. Chem. (Part L) 2005;32:209–246.

Jabrane A., Ben Jannet H., Miyamoto T., Mirjolet J.-F., Duchamp O., Harzallah-Skhiri F., Lacaille-Dubois M.A. Spirostane and cholestane glycosides from the bulbs of Allium nigrum L. Food Chem. 2011;125:447–455. doi: 10.1016/j.foodchem.2010.09.028. DOI

Upadhyay R.K. Nutritional and therapeutic potential of Allium vegetables. J. Nutr. Therap. 2017;6:18–37. doi: 10.6000/1929-5634.2017.06.01.3. DOI

Dawid C., Weber D., Musiol E., Janas V., Baur S., Lang R., Fromme T. Comparative assessment of purified saponins as permeabilization agents during respiratory. Biochim. Biophys. Acta Bioenerg. 2020;1861:148251. doi: 10.1016/j.bbabio.2020.148251. PubMed DOI

Karassina N., Hofsteen P., Cali J.J., Vidugiriene J. Time- and dose-depentendt toxicity studies in 3D cultures using a luminiscent lactate dehydrogenase assay. Methods Mol. Biol. 2021;2255:77–86. PubMed

Mskhiladze L., Legault J., Lavoie S., Mshvildadze V., Kuchukhidze J., Elias R., Pichette A. Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Molecules. 2008;13:2925–2934. doi: 10.3390/molecules13122925. PubMed DOI PMC

Kintia P.K. Chemistry and Biological Activity of Steroid Saponins from Moldavian Plants. In: Waller G.R., Yamasaki K., editors. Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology. Volume 404. Springer; Boston, MA, USA: 1996. pp. 309–334. PubMed

Dinan L., Harmatha J., Lafont R. Chromatographic procedures for the isolation of plant steroids. J. Chromatogr. A. 2001;935:105–123. doi: 10.1016/S0021-9673(01)00992-X. PubMed DOI

Dinan L., Harmatha J., Lafont R. HPLC of Steroids. In: Waksmundzka-Hajnos M., Sherma J., editors. High Performance Liquid Chromatography in Phytochemical Analysis. Volume 102. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2011. pp. 679–708.

Vennemann A., Alessandrini F., Wiemann M. Differential Effects of Surface-Functionalized Zirconium Oxide Nanoparticles on Alveolar Macrophages, Rat Lung, and a Mouse Allergy Model. Nanomaterials. 2017;7:280. doi: 10.3390/nano7090280. PubMed DOI PMC

Gupta A.K., Rather M.A., Jha A.K., Shashank A., Singhal S., Sharma M., Pathak U., Sharma D., Mastinu A. Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. Flowers: New Sources of Bioactive Compounds. Plants. 2020;9:1329. doi: 10.3390/plants9101329. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...