Spirostanol Saponins from Flowers of Allium Porrum and Related Compounds Indicating Cytotoxic Activity and Affecting Nitric Oxide Production Inhibitory Effect in Peritoneal Macrophages
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34770942
PubMed Central
PMC8587756
DOI
10.3390/molecules26216533
PII: molecules26216533
Knihovny.cz E-resources
- Keywords
- Allium porrum, NO production, aginoside, alliporin, cytotoxicity, leek flowers, steroid saponins,
- MeSH
- Allium chemistry MeSH
- Cell Line MeSH
- Flowers chemistry MeSH
- Lipopolysaccharides antagonists & inhibitors pharmacology MeSH
- Molecular Conformation MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Nitric Oxide antagonists & inhibitors biosynthesis MeSH
- Macrophages, Peritoneal drug effects metabolism MeSH
- Saponins chemistry isolation & purification pharmacology MeSH
- Spirostans chemistry isolation & purification pharmacology MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipopolysaccharides MeSH
- Nitric Oxide MeSH
- Saponins MeSH
- Spirostans MeSH
Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3β, 6β, 25R)-2,6-dihydroxyspirostan-3-yl β-D-glucopyranosyl-(1 → 3)-β-D-glucopranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl]-(1 → 4)-β-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.
Department of Pharmacology 2nd Faculty of Medicine Charles University 150 00 Prague Czech Republic
Institute of Experimental Medicine Czech Academy of Sciences 142 20 Prague Czech Republic
See more in PubMed
Hostettmann K., Marston A. Book, Saponins. Chemistry and Pharmacology of Natural Products. Cambridge University Press; Cambridge, UK: 1995. pp. 287–306.
Waller G.R., Yamasaki K., editors. Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology. Volume 404 Springer; New York, NY, USA: 1996.
Harmatha J. Chemo-ecological role of spirostanol saponins in the interaction between plants and insects. In: Oleszek W., Marston A., editors. Book Saponins in Food, Feedstuffs and Medicinal Plants. Volume 45. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2000. pp. 129–141.
Lanzotti V. Bioactive saponins from Allium and Aster plants. Phytochem. Rev. 2005;4:95–110. doi: 10.1007/s11101-005-1254-1. DOI
Lanzotti V. Bioactive polar natural compounds from garlic and onions. Phytochem. Rev. 2012;11:179–196. doi: 10.1007/s11101-012-9247-3. DOI
Sobolewska D., Michalska K., Podolak I., Grabowska K. Steroidal saponins from the genus Allium. Phytochem. Rev. 2016;15:1–32. doi: 10.1007/s11101-014-9381-1. PubMed DOI PMC
Francis G., Kerem Z., Makkar H.P.S., Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002;88:587–605. doi: 10.1079/BJN2002725. PubMed DOI
Harmatha J., Vokáč K., Kmoníčková E., Zídek Z. Lack of interference of common phytoecdysteroids with production of nitric oxide by immune-activated mammalian macrophages. Steroids. 2008;73:466–471. doi: 10.1016/j.steroids.2007.12.014. PubMed DOI
Harmatha J., Buděšínský M., Vokáč K., Kostecká P., Kmoníčková E., Zídek Z. Trilobolide and related sesquiterpene lactones from Laser trilobum possessing immunobiological properties. Fitoterapia. 2013;89:157–166. doi: 10.1016/j.fitote.2013.05.025. PubMed DOI
Harmatha J., Vokáč K., Buděšínský M., Zídek Z., Kmoníčková E. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide. Fitoterapia. 2015;107:90–99. doi: 10.1016/j.fitote.2015.10.002. PubMed DOI
Harmatha J., Buděšínský M., Jurášek M., Zimmermann T., Drašar P., Zídek Z., Kmoníčková E., Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI
Arnault C., Harmatha J., Mauchamp B., Sláma K. Influence of allelochemical substances of the host plant (Allium porrum) on development and moulting of Acrolepiopsis assectella (Lepidoptera) In: Labeyrie V., Fabres G., Lachaise D., editors. Their Role as Selective Factor. Insects-Plants, Junk Publishers; Dordrecht, The Netherlands: 1987. pp. 249–255.
Harmatha J., Mauchamp B., Arnault C., Sláma K. Identification of a spirostane-type saponin in the flowers of leek with inhibitory effects on growth of leek-moth larvae. Biochem. Syst. Ecol. 1987;15:113–116. doi: 10.1016/0305-1978(87)90089-5. DOI
Arnault C., Mauchamp B. Ecdysis inhibition in Acrolepiopsis assectella larvae by digitoxin: Antagonistic effects of cholesterol. Experientia. 1985;41:1074–1077. doi: 10.1007/BF01952151. DOI
Harmatha J., Dinan L. Interaction of dimeric ecdysteroids, glycosidic ecdysteroid conjugates and ecdysis-disturbing saponins with the ecdysteroid receptor assessed by means of the Drosophila melanogaster B-II bioassay. In: Konopinska D., editor. Book Arthropods: Chemical, Physiological and Environmental Aspects. Wroclaw Technology University Press; Wroclaw, Poland: 2002. pp. 79–84.
Sata N., Matsunaga S., Fusetani N., Nushikawa H., Takamura S., Saito T. New antifungal and cytotoxic steroidal saponins from the bulbs of elephant garlic mutant. Biosci. Biotechnol. Biochem. 1998;62:1904–1911. doi: 10.1271/bbb.62.1904. PubMed DOI
Kelginbayev A.N., Gorovits M.B., Gorovits T.T., Abubakirov N.K. Allium steroid saponins and sapogenins IX—Structure of aginosid. Khim. Prir. Soedin. 1976;4:480–486.
Dinan L., Bourne P.C., Meng Y., Sarker S.D., Tolentino R.B. Whiting, Assessment of natural products in the Drosophila melanogaster BII cell bioassay for ecdysteroid agonist and antagonist activities. CMLS Cell. Mol. Life Sci. 2001;58:321–342. doi: 10.1007/PL00000859. PubMed DOI PMC
Carotenuto A., Fattorusso E., Lanzotti V., Magno S. Spirostanol saponins of Allium porrum L. Phytochemistry. 1999;51:1077–1082. doi: 10.1016/S0031-9422(98)00712-2. PubMed DOI
Fattorusso E., Lanzotti V., Taglialatela-Scafati O., Di Rosa M., Ianaro A. Cytotoxic saponins from bulbs of Allium porrum L. J. Agric. Food Chem. 2000;48:3455–3462. doi: 10.1021/jf000331v. PubMed DOI
Fattorusso E., Lanzotti V., Magno S., Taglialatela-Scafati O. Sapogenins of Allium porrum L. J. Agric. Food Chem. 1998;46:4904–4908. doi: 10.1021/jf980849n. DOI
Gvazava L.N., Skhirtladze A.V. Steroidal saponin from Allium porrum. Chem. Nat. Comp. 2017;53:1093–1095. doi: 10.1007/s10600-017-2208-8. DOI
Gvazava L.N., Skhirtladze A.V. Steroidal glycoside from Allium porrum. Chem. Nat. Comp. 2018;54:487–489. doi: 10.1007/s10600-018-2385-0. DOI
Maisashvili M.R., Kuchukhidze D.K., Kikoladze V.S., Gvazava L.N. Steroidal glycosides of gitogenin from Allium rotundum. Chem. Nat. Comp. 2012;48:86–90. doi: 10.1007/s10600-012-0164-x. DOI
Tolkacheva N.V., Shashkov A.S., Chirva V.Y. Steroidal glycosides from Allium cyrillii bulbs. Chem. Nat. Comp. 2012;48:272–275. doi: 10.1007/s10600-012-0219-z. DOI
Mimaki Y., Kuroda M., Fukasawa T., Sashida Y. Steroidal glycosides from bulbs of Allium jesdianum. J. Nat. Prod. 1999;62:194–197. doi: 10.1021/np980346b. PubMed DOI
Kawashima K., Minaki Y., Sashida Y. Steroidal saponins from the bulbs of Allium schubertii. Phytochemistry. 1993;32:1267–1272. doi: 10.1016/S0031-9422(00)95103-3. PubMed DOI
Kravets S.D., Vollerner Y.S., Gorovits M.B., Abubakirov N.K. Steroids of the spirostan and furostan series from plants of the genus Allium. Khim. Prir. Soed. 1990;26:359–373.
Selim S., Al Jaouni S. Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm. BMC Complemet. Altern. Med. 2015;15:301. doi: 10.1186/s12906-015-0836-8. PubMed DOI PMC
Carotenuto A., Fattorusso E., Lanzotti V., Magno S., De Feo V., Carnuccio R., D’Acquisto F. Porrigenins A and B, Novel Cytotoxic and Antiproliferative Sapogenins Isolated from Allium porrum. J. Nat. Prod. 1997;60:1003–1007. doi: 10.1021/np960657r. PubMed DOI
Rezgui A., Mitaine-Offer A.C., Paululat T., Delemasure S., Dutartre P., Lacaille-Dubois M.-A. Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia. 2014;93:121–125. doi: 10.1016/j.fitote.2013.12.018. PubMed DOI
Lafont R., Harmatha J., Marion-Poll F., Dinan L., Wilson I.D. The Ecdysone Handbook. 3rd ed. 2002. [(accessed on 20 September 2021)]. Continuously Updated. Available online: http://ecdybase.org/
Rodrigues Adao C., Pereira da Silva B., Wanderley Tinoco L., Paz Parente J. Haemolytic Activity and Immunological Adjuvant Effect of a New Steroidal Saponin from Allium ampeloprasum var. porrum. Chem. Biodivers. 2012;9:58–67. doi: 10.1002/cbdv.201100005. PubMed DOI
Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5:1487–1499. PubMed PMC
De Geyter E., Lambert E., Geelen D., Smagghe G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 2007;1:96–105.
Chaieb I. Saponins as Insecticides: A Review. Tunisian J. Plant Protect. 2010;5:39–50.
Singh B., Kaur A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. Food Sci. Technol. 2018;87:93–101. doi: 10.1016/j.lwt.2017.08.077. DOI
Barile E., Bonanomi G., Antignani V., Zolfaghari B., Sajjadi S.E., Scala F., Lanzotti V. Saponins from Allium minutiflorum with antifungal activity. Phytochemistry. 2007;68:596–603. doi: 10.1016/j.phytochem.2006.10.009. PubMed DOI
Lanzotti V., Barile E., Antignani V., Bonanomi G., Scala F. Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry. 2012;78:126–134. doi: 10.1016/j.phytochem.2012.03.009. PubMed DOI
Mostafa A., Sudisha J., El-Sayed M., Ito S., Ikeda T., Yamauchi N., Shigyo M. Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem. Lett. 2013;6:274–280. doi: 10.1016/j.phytol.2013.03.001. DOI
Sparg S.G., Light M.E., van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharm. 2004;94:219–243. doi: 10.1016/j.jep.2004.05.016. PubMed DOI
Wang Y., Li C., Xiang L., Huang W., He X. Spirostanol saponins from Chinese onion (Allium chinense) exert pronounced anti-inflammatory and anti-proliferative activities. J. Funcion. Foods. 2016;25:208–219. doi: 10.1016/j.jff.2016.06.005. DOI
Lacaille-Dubois M.-A. Bioactive saponins with cancer related and immunomodulatory activity: Recent developments. Stud. Nat. Prod. Chem. (Part L) 2005;32:209–246.
Jabrane A., Ben Jannet H., Miyamoto T., Mirjolet J.-F., Duchamp O., Harzallah-Skhiri F., Lacaille-Dubois M.A. Spirostane and cholestane glycosides from the bulbs of Allium nigrum L. Food Chem. 2011;125:447–455. doi: 10.1016/j.foodchem.2010.09.028. DOI
Upadhyay R.K. Nutritional and therapeutic potential of Allium vegetables. J. Nutr. Therap. 2017;6:18–37. doi: 10.6000/1929-5634.2017.06.01.3. DOI
Dawid C., Weber D., Musiol E., Janas V., Baur S., Lang R., Fromme T. Comparative assessment of purified saponins as permeabilization agents during respiratory. Biochim. Biophys. Acta Bioenerg. 2020;1861:148251. doi: 10.1016/j.bbabio.2020.148251. PubMed DOI
Karassina N., Hofsteen P., Cali J.J., Vidugiriene J. Time- and dose-depentendt toxicity studies in 3D cultures using a luminiscent lactate dehydrogenase assay. Methods Mol. Biol. 2021;2255:77–86. PubMed
Mskhiladze L., Legault J., Lavoie S., Mshvildadze V., Kuchukhidze J., Elias R., Pichette A. Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Molecules. 2008;13:2925–2934. doi: 10.3390/molecules13122925. PubMed DOI PMC
Kintia P.K. Chemistry and Biological Activity of Steroid Saponins from Moldavian Plants. In: Waller G.R., Yamasaki K., editors. Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology. Volume 404. Springer; Boston, MA, USA: 1996. pp. 309–334. PubMed
Dinan L., Harmatha J., Lafont R. Chromatographic procedures for the isolation of plant steroids. J. Chromatogr. A. 2001;935:105–123. doi: 10.1016/S0021-9673(01)00992-X. PubMed DOI
Dinan L., Harmatha J., Lafont R. HPLC of Steroids. In: Waksmundzka-Hajnos M., Sherma J., editors. High Performance Liquid Chromatography in Phytochemical Analysis. Volume 102. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2011. pp. 679–708.
Vennemann A., Alessandrini F., Wiemann M. Differential Effects of Surface-Functionalized Zirconium Oxide Nanoparticles on Alveolar Macrophages, Rat Lung, and a Mouse Allergy Model. Nanomaterials. 2017;7:280. doi: 10.3390/nano7090280. PubMed DOI PMC
Gupta A.K., Rather M.A., Jha A.K., Shashank A., Singhal S., Sharma M., Pathak U., Sharma D., Mastinu A. Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. Flowers: New Sources of Bioactive Compounds. Plants. 2020;9:1329. doi: 10.3390/plants9101329. PubMed DOI PMC