A Guide for Water Bolus Temperature Selection for Semi-Deep Head and Neck Hyperthermia Treatments Using the HYPERcollar3D Applicator
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
11368
KWF Kankerbestrijding
21-00579S
Grantová Agentura České Republiky
CA17115
European Cooperation in Science and Technology
PubMed
34885235
PubMed Central
PMC8657004
DOI
10.3390/cancers13236126
PII: cancers13236126
Knihovny.cz E-zdroje
- Klíčová slova
- head and neck, hyperthermia, microwave applicator, specific absorption rate, temperature prediction, water bolus,
- Publikační typ
- časopisecké články MeSH
During hyperthermia cancer treatments, especially in semi-deep hyperthermia in the head and neck (H&N) region, the induced temperature pattern is the result of a complex interplay between energy delivery and tissue cooling. The purpose of this study was to establish a water bolus temperature guide for the HYPERcollar3D H&N applicator. First, we measured the HYPERcollar3D water bolus heat-transfer coefficient. Then, for 20 H&N patients and phase/amplitude settings of 93 treatments we predict the T50 for nine heat-transfer coefficients and ten water bolus temperatures ranging from 20-42.5 °C. Total power was always tuned to obtain a maximum of 44 °C in healthy tissue in all simulations. As a sensitivity study we used constant and temperature-dependent tissue cooling properties. We measured a mean heat-transfer coefficient of h = 292 W m-2K-1 for the HYPERcollar3D water bolus. The predicted T50 shows that temperature coverage is more sensitive to the water bolus temperature than to the heat-transfer coefficient. We propose changing the water bolus temperature from 30 °C to 35 °C which leads to a predicted T50 increase of +0.17/+0.55 °C (constant/temperature-dependent) for targets with a median depth < 20 mm from the skin surface. For deeper targets, maintaining a water bolus temperature at 30 °C is proposed.
Zobrazit více v PubMed
Rijnen Z., Togni P., Roskam R., van de Geer S.G., Goossens R.H.M., Paulides M.M. Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies. Int. J. Hyperth. 2015;31:823–830. doi: 10.3109/02656736.2015.1076893. PubMed DOI
Verduijn G.M., de Wee E.M., Rijnen Z., Togni P., Hardillo J.A.U., Ten Hove I., Franckena M., Van Rhoon G.C., Paulides M. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma—A feasibility study. Int. J. Hyperth. 2018;34:994–1001. doi: 10.1080/02656736.2018.1454610. PubMed DOI
Kroesen M., Mulder H.T., van Holthe J.M.L., Aangeenbrug A.A., Mens J.W.M., van Doorn H.C., Paulides M.M., Hoop E.O.-D., Vernhout R.M., Lutgens L.C., et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019;140:150–158. doi: 10.1016/j.radonc.2019.06.021. PubMed DOI
Togni P., Rijnen Z., Numan W.C.M., Verhaart R.F., Bakker J.F., van Rhoon G.C., Paulides M. Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia. Phys. Med. Biol. 2013;58:5997–6009. doi: 10.1088/0031-9155/58/17/5997. PubMed DOI
Drizdal T., Paulides M.M., van Holthe N., van Rhoon G.C. Hyperthermia treatment planning guided applicator selection for sub-superficial head and neck tumors heating. Int. J. Hyperth. 2018;34:704–713. doi: 10.1080/02656736.2017.1383517. PubMed DOI
Paulides M.M., Bakker J.F., Neufeld E., van der Zee J., Jansen P.P., Levendag P.C., van Rhoon G.C. Winner of the “New Investigator Award” at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: A novel applicator for hyperthermia in the head and neck. Int. J. Hyperth. 2007;23:567–576. doi: 10.1080/02656730701670478. PubMed DOI
Paulides M.M., Bakker J.F., Linthorst M., van der Zee J., Rijnen Z., Neufeld E., Pattynama P.M.T., Jansen P.P., Levendag P.C., van Rhoon G.C. The clinical feasibility of deep hyperthermia treatment in the head and neck: New challenges for positioning and temperature measurement. Phys. Med. Biol. 2010;55:2465–2480. doi: 10.1088/0031-9155/55/9/003. PubMed DOI
Paulides M.M., Bakker J.F., Chavannes N., Rhoon G.C.V. A patch antenna design for application in a phased-array head and neck hyperthermia applicator. IEEE Trans. Biomed. Eng. 2007;54:2057–2063. doi: 10.1109/TBME.2007.895111. PubMed DOI
der Gaag M.L.V., de Bruijne M., Samaras T., van der Zee J., van Rhoon G.C. Development of a guideline for the water bolus temperature in superficial hyperthermia. Int. J. Hyperth. 2006;22:637–656. doi: 10.1080/02656730601074409. PubMed DOI
Ito K., Furuya K., Okano Y., Hamada L. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron. Commun. Jpn. (Part I: Commun.) 2001;84:67–77. doi: 10.1002/1520-6424(200104)84:4<67::AID-ECJA8>3.0.CO;2-D. DOI
Fortunati V., Verhaart R.F., Niessen W.J., Veenland J.F., Paulides M.M., van Walsum T. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Phys. Med. Biol. 2015;60:6547. doi: 10.1088/0031-9155/60/16/6547. PubMed DOI
Rijnen Z., Bakker J.F., Canters R.A.M., Togni P., Verduijn G.M., Levendag P.C., Van Rhoon G.C., Paulides M. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int. J. Hyperth. 2013;29:181–193. doi: 10.3109/02656736.2013.783934. PubMed DOI
Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996;41:2271–2293. doi: 10.1088/0031-9155/41/11/003. PubMed DOI
Hasgall P.A., Neufeld E., Gosselin M.C., Klingenbck A., Kuster N.K. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0. IT’IS; Zurich, Switzerland: 2018. [(accessed on 31 May 2018)]. Available online: www.itis.ethz.ch/database. DOI
Verhaart R.F., Verduijn G.M., Fortunati V., Rijnen Z., van Walsum T., Veenland J.F., Paulides M.M. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int. J. Hyperth. 2015;31:686–692. doi: 10.3109/02656736.2015.1052855. PubMed DOI
Lang J., Erdmann B., Seebass M. Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 1999;46:1129–1138. doi: 10.1109/10.784145. PubMed DOI
Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology. J. Appl. Physiol. 1948;1:93–122. doi: 10.1152/jappl.1948.1.2.93. PubMed DOI
Song C.W., Lokshina A., Rhee J.G., Patten M., Levitt S.H. Implication of Blood Flow in Hyperthermic Treatment of Tumors. IEEE Trans. Biomed. Eng. 1984;BME-31:9–16. doi: 10.1109/TBME.1984.325364. PubMed DOI
Drizdal T., Togni P., Visek L., Vrba J. Comparison of constant and temperature dependent blood perfusion in temperature prediction for superficial hyperthermia [Article] Radioengineering. 2010;19:281–289.
Stauffer P.R., Maccarini P., Arunachalam K., Craciunescu O., Diederich C., Juang T., Rossetto F., Schlorff J., Milligan A., Hsu J., et al. Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence. Int. J. Hyperth. 2010;26:686–698. doi: 10.3109/02656736.2010.501511. PubMed DOI PMC
Birkelund Y., Jacobsen S., Arunachalam K., Maccarini P., Stauffer P.R. Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia. Phys. Med. Biol. 2009;54:3937–3953. doi: 10.1088/0031-9155/54/13/001. PubMed DOI PMC
Kok H.P., Gellermann J., van den Berg C.A.T., Stauffer P.R., Hand J.W., Crezee J. Thermal modelling using discrete vasculature for thermal therapy: A review. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group. 2013;29:336–345. doi: 10.3109/02656736.2013.801521. PubMed DOI PMC
Sumser K., Neufeld E., Verhaart R.F., Fortunati V., Verduijn G.M., Drizdal T., Van Walsum T., Veenland J.F., Paulides M. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning. Int. J. Hyperth. 2019;36:801–811. doi: 10.1080/02656736.2019.1641633. PubMed DOI