A Guide for Water Bolus Temperature Selection for Semi-Deep Head and Neck Hyperthermia Treatments Using the HYPERcollar3D Applicator

. 2021 Dec 05 ; 13 (23) : . [epub] 20211205

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34885235

Grantová podpora
11368 KWF Kankerbestrijding
21-00579S Grantová Agentura České Republiky
CA17115 European Cooperation in Science and Technology

During hyperthermia cancer treatments, especially in semi-deep hyperthermia in the head and neck (H&N) region, the induced temperature pattern is the result of a complex interplay between energy delivery and tissue cooling. The purpose of this study was to establish a water bolus temperature guide for the HYPERcollar3D H&N applicator. First, we measured the HYPERcollar3D water bolus heat-transfer coefficient. Then, for 20 H&N patients and phase/amplitude settings of 93 treatments we predict the T50 for nine heat-transfer coefficients and ten water bolus temperatures ranging from 20-42.5 °C. Total power was always tuned to obtain a maximum of 44 °C in healthy tissue in all simulations. As a sensitivity study we used constant and temperature-dependent tissue cooling properties. We measured a mean heat-transfer coefficient of h = 292 W m-2K-1 for the HYPERcollar3D water bolus. The predicted T50 shows that temperature coverage is more sensitive to the water bolus temperature than to the heat-transfer coefficient. We propose changing the water bolus temperature from 30 °C to 35 °C which leads to a predicted T50 increase of +0.17/+0.55 °C (constant/temperature-dependent) for targets with a median depth < 20 mm from the skin surface. For deeper targets, maintaining a water bolus temperature at 30 °C is proposed.

Zobrazit více v PubMed

Rijnen Z., Togni P., Roskam R., van de Geer S.G., Goossens R.H.M., Paulides M.M. Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies. Int. J. Hyperth. 2015;31:823–830. doi: 10.3109/02656736.2015.1076893. PubMed DOI

Verduijn G.M., de Wee E.M., Rijnen Z., Togni P., Hardillo J.A.U., Ten Hove I., Franckena M., Van Rhoon G.C., Paulides M. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma—A feasibility study. Int. J. Hyperth. 2018;34:994–1001. doi: 10.1080/02656736.2018.1454610. PubMed DOI

Kroesen M., Mulder H.T., van Holthe J.M.L., Aangeenbrug A.A., Mens J.W.M., van Doorn H.C., Paulides M.M., Hoop E.O.-D., Vernhout R.M., Lutgens L.C., et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019;140:150–158. doi: 10.1016/j.radonc.2019.06.021. PubMed DOI

Togni P., Rijnen Z., Numan W.C.M., Verhaart R.F., Bakker J.F., van Rhoon G.C., Paulides M. Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia. Phys. Med. Biol. 2013;58:5997–6009. doi: 10.1088/0031-9155/58/17/5997. PubMed DOI

Drizdal T., Paulides M.M., van Holthe N., van Rhoon G.C. Hyperthermia treatment planning guided applicator selection for sub-superficial head and neck tumors heating. Int. J. Hyperth. 2018;34:704–713. doi: 10.1080/02656736.2017.1383517. PubMed DOI

Paulides M.M., Bakker J.F., Neufeld E., van der Zee J., Jansen P.P., Levendag P.C., van Rhoon G.C. Winner of the “New Investigator Award” at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: A novel applicator for hyperthermia in the head and neck. Int. J. Hyperth. 2007;23:567–576. doi: 10.1080/02656730701670478. PubMed DOI

Paulides M.M., Bakker J.F., Linthorst M., van der Zee J., Rijnen Z., Neufeld E., Pattynama P.M.T., Jansen P.P., Levendag P.C., van Rhoon G.C. The clinical feasibility of deep hyperthermia treatment in the head and neck: New challenges for positioning and temperature measurement. Phys. Med. Biol. 2010;55:2465–2480. doi: 10.1088/0031-9155/55/9/003. PubMed DOI

Paulides M.M., Bakker J.F., Chavannes N., Rhoon G.C.V. A patch antenna design for application in a phased-array head and neck hyperthermia applicator. IEEE Trans. Biomed. Eng. 2007;54:2057–2063. doi: 10.1109/TBME.2007.895111. PubMed DOI

der Gaag M.L.V., de Bruijne M., Samaras T., van der Zee J., van Rhoon G.C. Development of a guideline for the water bolus temperature in superficial hyperthermia. Int. J. Hyperth. 2006;22:637–656. doi: 10.1080/02656730601074409. PubMed DOI

Ito K., Furuya K., Okano Y., Hamada L. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron. Commun. Jpn. (Part I: Commun.) 2001;84:67–77. doi: 10.1002/1520-6424(200104)84:4<67::AID-ECJA8>3.0.CO;2-D. DOI

Fortunati V., Verhaart R.F., Niessen W.J., Veenland J.F., Paulides M.M., van Walsum T. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Phys. Med. Biol. 2015;60:6547. doi: 10.1088/0031-9155/60/16/6547. PubMed DOI

Rijnen Z., Bakker J.F., Canters R.A.M., Togni P., Verduijn G.M., Levendag P.C., Van Rhoon G.C., Paulides M. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int. J. Hyperth. 2013;29:181–193. doi: 10.3109/02656736.2013.783934. PubMed DOI

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996;41:2271–2293. doi: 10.1088/0031-9155/41/11/003. PubMed DOI

Hasgall P.A., Neufeld E., Gosselin M.C., Klingenbck A., Kuster N.K. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0. IT’IS; Zurich, Switzerland: 2018. [(accessed on 31 May 2018)]. Available online: www.itis.ethz.ch/database. DOI

Verhaart R.F., Verduijn G.M., Fortunati V., Rijnen Z., van Walsum T., Veenland J.F., Paulides M.M. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int. J. Hyperth. 2015;31:686–692. doi: 10.3109/02656736.2015.1052855. PubMed DOI

Lang J., Erdmann B., Seebass M. Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 1999;46:1129–1138. doi: 10.1109/10.784145. PubMed DOI

Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology. J. Appl. Physiol. 1948;1:93–122. doi: 10.1152/jappl.1948.1.2.93. PubMed DOI

Song C.W., Lokshina A., Rhee J.G., Patten M., Levitt S.H. Implication of Blood Flow in Hyperthermic Treatment of Tumors. IEEE Trans. Biomed. Eng. 1984;BME-31:9–16. doi: 10.1109/TBME.1984.325364. PubMed DOI

Drizdal T., Togni P., Visek L., Vrba J. Comparison of constant and temperature dependent blood perfusion in temperature prediction for superficial hyperthermia [Article] Radioengineering. 2010;19:281–289.

Stauffer P.R., Maccarini P., Arunachalam K., Craciunescu O., Diederich C., Juang T., Rossetto F., Schlorff J., Milligan A., Hsu J., et al. Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence. Int. J. Hyperth. 2010;26:686–698. doi: 10.3109/02656736.2010.501511. PubMed DOI PMC

Birkelund Y., Jacobsen S., Arunachalam K., Maccarini P., Stauffer P.R. Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia. Phys. Med. Biol. 2009;54:3937–3953. doi: 10.1088/0031-9155/54/13/001. PubMed DOI PMC

Kok H.P., Gellermann J., van den Berg C.A.T., Stauffer P.R., Hand J.W., Crezee J. Thermal modelling using discrete vasculature for thermal therapy: A review. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group. 2013;29:336–345. doi: 10.3109/02656736.2013.801521. PubMed DOI PMC

Sumser K., Neufeld E., Verhaart R.F., Fortunati V., Verduijn G.M., Drizdal T., Van Walsum T., Veenland J.F., Paulides M. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning. Int. J. Hyperth. 2019;36:801–811. doi: 10.1080/02656736.2019.1641633. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...