• This record comes from PubMed

A New Caco-2 Cell Model of in Vitro Intestinal Barrier: Application for the Evaluation of Magnesium Salts Absorption

. 2021 Nov 30 ; 70 (Suppl 1) : S31-S41.

Language English Country Czech Republic Media print

Document type Journal Article

Experimental data concerning the bioavailability of the different Mg-salts in human organism is inconsistent. Mg-absorption reported by clinical studies largely varies depending on the method used for evaluation. The aim of this study was to evaluate the bioavailability and accessibility of magnesium bound in different Mg-salt compounds, using an in vitro model of intestinal cell barrier. The study included a variety of inorganic (oxide, sulphate, chloride, carbonate) and organic salts (lactate, citrate, pidolate). Caco-2 cells were cultivated in a complete culture medium with different magnesium salts treatments in ascending concentrations. The viability and quantity of cells was analysed by FACS. Mg-absorption was analysed by a direct colorimetric assay, measured by spectrometry. T-test identified a significant decrease in cell count treatment with mg-lactate compared with citrate. Mg-pidolate showed a significantly higher cell viability compared with Mg-citrate, Mg-lactate and Mg-chloride. Even though the difference was not significant, we showed that an increase in Mg2+ salt concentration progressively decreased the cell count and the viability and the effect was universal for all the used Mg-salt treatments. Mg-citrate, chloride, and sulphate showed a significantly lower absorption compared to Mg-carbonate, pidolate and oxide. Our in vitro monolayer model of human intestinal transport showed that viability and quantity of cell decreased with increasing Mg-concentration. We admit that our experiment model may have some limitations in accurately describing an in vivo Mg2+ absorption. Moreover, it is also necessary to assess the relevance of our data in vivo and especially in clinical practice.

See more in PubMed

BEHAR J. Magnesium absorption by the rat ileum and colon. Am J Physiol Leg. 1974;227:334–340. doi: 10.1152/ajplegacy.1974.227.2.334. PubMed DOI

BØHMER T, RØSETH A, HOLM H, WEBERG-TEIGEN S, WAHL L. Bioavailability of oral magnesium supplementation in female students evaluated from elimination of magnesium in 24-hour urine. Magnes Trace Elem. 1990;9:272–278. PubMed

BRANNAN PG, VERGNE-MARINI P, PAK CY, HULL AR, FORDTRAN JS. Magnesium absorption in the human small intestine. Results in normal subjects, patients with chronic renal disease, and patients with absorptive hypercalciuria. J Clin Investig. 1976;57:1412–1418. doi: 10.1172/JCI108410. PubMed DOI PMC

COUDRAY C, RAMBEAU M, FEILLET-COUDRAY C, GUEUX E, TRESSOL JC, MAZUR A, RAYSSIGUIER Y. Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnesium Res. 2005;18:215–223. PubMed

De BAAIJ JHF, HOENDEROP JGJ, BINDELS RJM. Regulation of magnesium balance: Lessons learned from human genetic disease. Clin Kidney J. 2012;5: i15–i24. doi: 10.1093/ndtplus/sfr164. PubMed DOI PMC

EKMEKCIOGLU C, EKMEKCIOGLU A, MARKTL W. Magnesium transport from aqueous solutions across Caco-2 cells - an experimental model for intestinal bioavailability studies. Physiological considerations and recommendations. Magnes Res. 2000;13:93–102. PubMed

FIROZ M, GRABER M. Bioavailability of US commercial magnesium preparations. Magnes Res. 2001;14:257–262. PubMed

GEGENHEIMER L, KOEGLER H, EHRET S, LUECKER PW. Bioaequivalenz von Magnesium aus Kautabletten und Granulat. Magnes Bull. 1994;16:6–8.

HOU J, RENIGUNTA A, GOMES AS, HOU M, PAUL DL, WALDEGGER S, GOODENOUGH DA. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci USA. 2009;106:15350–15355. doi: 10.1073/pnas.0907724106. PubMed DOI PMC

KAPPELER D, HEIMBECK I, HERPICH C, NAUE N, HÖFLER J, TIMMER W, MICHALKE B. Higher bioavailability of magnesium citrate as compared to magnesium oxide shown by evaluation of urinary excretion and serum levels after single-dose administration in a randomized cross-over study. BMC Nutr. 2017;3:7. doi: 10.1186/s40795-016-0121-3. DOI

KIELA PR, GHISHAN FK. Molecular Mechanisms of Intestinal Transport of Calcium, Phosphate, and Magnesium. In: Said HM, editor. Physiology of the Gastrointestinal Tract. 6th ed. Chapter 59. Academic Press; Cambridge, MA, USA: 2018. pp. 1405–1449. DOI

KIELA PR, GHISHAN FK. Molecular Mechanisms of Intestinal Transport of Calcium, Phosphate, and Magnesium. In: Said HM, editor. Physiology of the Gastrointestinal Tract. 6th Edition. Chapter 59. Academic Press; Cambridge, MA, USA: 2018. pp. 1405–1449. DOI

LINDBERG JS, ZOBITZ MM, POINDEXTER JR, PAK CY. Magnesium bioavailability from magnesium citrate and magnesium oxide. J Am Coll Nutr. 1990;9:48–55. doi: 10.1080/07315724.1990.10720349. PubMed DOI

MAGUIRE ME, COWAN JA. Magnesium chemistry and biochemistry. Biometals. 2002;15:203–210. doi: 10.1023/A:1016058229972. PubMed DOI

MUEHLBAUER B, SCHWENK M, CORAM WM, ANTONIN KH, ETIENNE P, BIECK PR. Magnesium-L-aspartate-HCl and magnesium-oxide: bioavailability in healthy volunteers. Eur J Clin Pharmacol. 1991;40:437–438. doi: 10.1007/BF00265863. PubMed DOI

NATOLI M, LEONI BD, D’AGNANO I, et al. Cell growing density affects the structural and functional properties of Caco-2 differentiated monolayer. J Cell Physiol. 2011;226:1531–1543. doi: 10.1002/jcp.22487. PubMed DOI

PLANES P, ROUANET JM, LAURENT C, BACCOU J-C, BESANÇON P, CAPORICCIO B. Magnesium bioavailability from magnesium-fortified spirulina in cultured human intestinal Caco-2 cells. Food Chem. 2002;77:213–218. doi: 10.1016/S0308-8146(01)00341-7. DOI

RANADE VV, SOMBERG JC. Bioavailability and Pharmacokinetics of Magnesium After Administration of Magnesium Salts to Humans. Am J Therap. 2001;8:345–357. doi: 10.1097/00045391-200109000-00008. PubMed DOI

RYAZANOVA LV, RONDON LJ, ZIERLER S, HU Z, GALLI J, YAMAGUCHI TP, MAZUR A, FLEIG A, RYAZANOV AG. TRPM7 is essential for Mg2+ homeostasis in mammals. Nat Commun. 2010;1:109. doi: 10.1038/ncomms1108. PubMed DOI PMC

SCHLINGMANN KP, WALDEGGER S, KONRAD M, CHUBANOV V, GUDERMANN T. TRPM6 and TRPM7-Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007;1772:813–821. doi: 10.1016/j.bbadis.2007.03.009. PubMed DOI

SCHMITZ C, PERRAUD A-L, JOHNSON CO, INABE K, SMITH MK, PENNER R, KUROSAKI T, FLEIG A, SCHARENBERG AM. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003;114:191–200. doi: 10.1016/S0092-8674(03)00556-7. PubMed DOI

SCHUCHARDT JP, HAHN A. Intestinal absorption and factors influencing bioavailability of magnesium-an update. Curr Nutr Food Sci. 2017;13:260–278. doi: 10.2174/1573401313666170427162740. PubMed DOI PMC

SCHUETTE SA, LASHNER BA, JANGHORBANI M. Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. JPEN J Parenter Enteral Nutr. 1994;18:430–435. doi: 10.1177/0148607194018005430. PubMed DOI

SCHUETTE SA, LASHNER BA, JANGHORBANI M. Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. J Parenter Enteral Nutr. 1994;18:430–435. doi: 10.1177/0148607194018005430. PubMed DOI

THONGON N, CHAMNIANSAWAT S. The inhibitory role of purinergic P2Y receptor on Mg2+ transport across intestinal epithelium-like Caco-2 monolayer. J Physiol Sci. 2019;69:129–141. doi: 10.1007/s12576-018-0628-2. PubMed DOI PMC

THONGON N, KRISHNAMRA N. Apical acidity decreases inhibitory efect of omeprazole on Mg2+ absorption and claudin-7 and -12 expression in Caco-2 monolayers. Exp Mol Med. 2012;44:684–693. PubMed PMC

THONGON N, KETKEAW P, NUEKCHOB C. The roles of acidsensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epitheliumlike Caco-2 monolayers. J Physiol Sci. 2014;64:129–139. doi: 10.3858/emm.2012.44.11.077. PubMed DOI PMC

THONGON N, KRISHNAMRA N. Omeprazole decreases magnesium transport across Caco-2 monolayers. World J Gastroenterol. 2011;17:1574–1583. doi: 10.3748/wjg.v17.i12.1574. PubMed DOI PMC

THONGON N, KRISHNAMRA N. Omeprazole decreases magnesium transport across Caco-2 monolayers. World J Gastroenterol. 2011;17:1574–1583. doi: 10.3748/wjg.v17.i12.1574. PubMed DOI PMC

WALKER AF, MARAKIS G, CHRISTIE S, BYNG M. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res. 2003;16:183–191. PubMed

WOLF FI, CITTADINI A. Chemistry and biochemistry of magnesium. Mol Asp Med. 2003;24:3–9. doi: 10.1016/S0098-2997(02)00087-0. PubMed DOI

WORKINGER JL, DOYLE RP, BORTZ J. Challenges in the diagnosis of magnesium status. Nutrients. 2018;10:1202. doi: 10.3390/nu10091202. PubMed DOI PMC

XU ZHICHENG, WANG SHUJUAN, ZHAO BO, CHEN CHANGHE. Study on potential biphasic solvents: Absorption capacity, CO2 loading and reaction rate. Energy Procedia. 2013;37:494–498. doi: 10.1016/j.egypro.2013.05.135. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...