Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
MC_UU_12015/1
Medical Research Council - United Kingdom
MR/N003284/1
Medical Research Council - United Kingdom
PubMed
34926279
PubMed Central
PMC8678088
DOI
10.3389/fonc.2021.771312
Knihovny.cz E-resources
- Keywords
- genetic polymorphisms, genome-wide association study, pancreatic cancer, recessive model, susceptibility,
- Publication type
- Journal Article MeSH
Although 21 pancreatic cancer susceptibility loci have been identified in individuals of European ancestry through genome-wide association studies (GWASs), much of the heritability of pancreatic cancer risk remains unidentified. A recessive genetic model could be a powerful tool for identifying additional risk variants. To discover recessively inherited pancreatic cancer risk loci, we performed a re-analysis of the largest pancreatic cancer GWAS, the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including 8,769 cases and 7,055 controls of European ancestry. Six single nucleotide polymorphisms (SNPs) showed associations with pancreatic cancer risk according to a recessive model of inheritance. We replicated these variants in 3,212 cases and 3,470 controls collected from the PANcreatic Disease ReseArch (PANDoRA) consortium. The results of the meta-analyses confirmed that rs4626538 (7q32.2), rs7008921 (8p23.2) and rs147904962 (17q21.31) showed specific recessive effects (p<10-5) compared with the additive effects (p>10-3), although none of the six SNPs reached the conventional threshold for genome-wide significance (p < 5×10-8). Additional bioinformatic analysis explored the functional annotations of the SNPs and indicated a possible relationship between rs36018702 and expression of the BCL2L11 and BUB1 genes, which are known to be involved in pancreatic biology. Our findings, while not conclusive, indicate the importance of considering non-additive genetic models when performing GWAS analysis. The SNPs associated with pancreatic cancer in this study could be used for further meta-analysis for recessive association of SNPs and pancreatic cancer risk and might be a useful addiction to improve the performance of polygenic risk scores.
1st Department of Medicine University of Szeged Szeged Hungary
1st Faculty of Medicine Institute of Biology and Medical Genetics Prague Czechia
Applied Research on Cancer Net Research Center University and Hospital Trust of Verona Verona Italy
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Blood Transfusion Service Children's Hospital Azienda Ospedaliero Universitaria Meyer Florence Italy
Centre for Surgical Oncology Medias Klinikum Burghausen Burghausen Germany
Centre for Translational Medicine Department of Medicine University of Szeged Szeged Hungary
Department for Determinants of Chronic Diseases Bilthoven Netherlands
Department of Biology University of Pisa Pisa Italy
Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland
Department of General Surgery University of Heidelberg Heidelberg Germany
Department of Internal Medicine San Carlo Hospital Potenza Italy
Department of Medicine Padua University Hospital Padua Italy
Department of Radiology and Oncology Institute of Cancer of São Paulo São Paulo Brazil
Department of Surgery Medical School University of Pécs Pécs Hungary
Digestive and Liver Disease Unit Sant' Andrea Hospital Rome Italy
Division of General and Transplant Surgery Pisa University Hospital Pisa Italy
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Endoscopic Surgery Department Hippocratio General Hospital of Athens Athens Greece
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czechia
Faculty of Medicine and Psychology Sapienza University of Rome Rome Italy
Faculty of Medicine University of São Paulo São Paulo Brazil
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
German Cancer Consortium Heidelberg Germany
Institute for Translational Medicine Medical School University of Pécs Pécs Hungary
Laboratory for Applied Science and Technology in Health Carlos Chagas Institute Curitiba Brazil
Medical Faculty Heidelberg University of Heidelberg Heidelberg Germany
See more in PubMed
Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. . Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. Eur J Cancer (2018) 103:356–87. doi: 10.1016/j.ejca.2018.07.005 PubMed DOI
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res (2014) 74:2913–21. doi: 10.1158/0008-5472.CAN-14-0155 PubMed DOI
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68:394–424. doi: 10.3322/caac.21492 PubMed DOI
Karim-Kos HE, de Vries E, Soerjomataram I, Lemmens V, Siesling S, Coebergh JWW. Recent Trends of Cancer in Europe: A Combined Approach of Incidence, Survival and Mortality for 17 Cancer Sites Since the 1990s. Eur J Cancer (2008) 44:1345–89. doi: 10.1016/j.ejca.2007.12.015 PubMed DOI
Arnold M, Rutherford MJ, Bardot A, Ferlay J, Andersson TML, Myklebust TÅ, et al. . Progress in Cancer Survival, Mortality, and Incidence in Seven High-Income Countries 1995–2014 (ICBP SURVMARK-2): A Population-Based Study. Lancet Oncol (2019) 20:1493–505. doi: 10.1016/S1470-2045(19)30456-5 PubMed DOI PMC
Gentiluomo M, Canzian F, Nicolini A, Gemignani F, Landi S, Campa D. Germline Genetic Variability in Pancreatic Cancer Risk and Prognosis. Semin Cancer Biol (2020) S1044-579X(20)30174-7. doi: 10.1016/j.semcancer.2020.08.003 PubMed DOI
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, et al. . Genome-Wide Association Study Identifies Variants in the ABO Locus Associated With Susceptibility to Pancreatic Cancer. Nat Genet (2009) 41:986–90. doi: 10.1038/ng.429 PubMed DOI PMC
Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, et al. . A Genome-Wide Association Study Identifies Pancreatic Cancer Susceptibility Loci on Chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet (2010) 42:224–8. doi: 10.1038/ng.522 PubMed DOI PMC
Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al. . Common Variation at 2p13.3, 3q29, 7p13 and 17q25.1 Associated With Susceptibility to Pancreatic Cancer. Nat Genet (2015) 47:911–6. doi: 10.1038/ng.3341 PubMed DOI PMC
Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al. . Three New Pancreatic Cancer Susceptibility Signals Identified on Chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget (2016) 7:66328–43. doi: 10.18632/oncotarget.11041 PubMed DOI PMC
Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, et al. . Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Pancreatic Cancer. Nat Genet (2014) 46:994–1000. doi: 10.1038/ng.3052 PubMed DOI PMC
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al. . Genome-Wide Meta-Analysis Identifies Five New Susceptibility Loci for Pancreatic Cancer. Nat Commun (2018) 9:1–11. doi: 10.1038/s41467-018-02942-5 PubMed DOI PMC
Campa D, Gentiluomo M, Obazee O, Ballerini A, Vodickova L, Hegyi P, et al. . Genome-Wide Association Study Identifies an Early Onset Pancreatic Cancer Risk Locus. Int J Cancer (2020) 147:2065–74. doi: 10.1002/ijc.33004 PubMed DOI
Galeotti AA, Gentiluomo M, Rizzato C, Obazee O, Neoptolemos JP, Pasquali C, et al. . Polygenic and Multifactorial Scores for Pancreatic Ductal Adenocarcinoma Risk Prediction. J Med Genet (2021) 58:369–77. doi: 10.1136/jmedgenet-2020-106961 PubMed DOI
Kim J, Yuan C, Babic A, Bao Y, Clish CB, Pollak MN, et al. . Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population. Cancer Epidemiol Biomarkers Prev (2020) 29:999–1008. doi: 10.1158/1055-9965.EPI-19-1389 PubMed DOI PMC
Chen F, Childs EJ, Mocci E, Bracci P, Gallinger S, Li D, et al. . Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PANC4 Study. Cancer Epidemiol Biomarkers Prev (2019) 28:1238–45. doi: 10.1158/1055-9965.EPI-18-1235 PubMed DOI PMC
Sud A, Kinnersley B, Houlston RS. Genome-Wide Association Studies of Cancer: Current Insights and Future Perspectives. Nat Rev Cancer (2017) 17:692–704. doi: 10.1038/nrc.2017.82 PubMed DOI
Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic Statistical Analysis in Genetic Case-Control Studies. Nat Protoc (2011) 6:121–33. doi: 10.1038/nprot.2010.182 PubMed DOI PMC
Dizier MH, Demenais F, Mathieu F. Gain of Power of the General Regression Model Compared to Cochran-Armitage Trend Tests: Simulation Study and Application to Bipolar Disorder. BMC Genet (2017) 18:24. doi: 10.1186/s12863-017-0486-6 PubMed DOI PMC
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. . Next-Generation Genotype Imputation Service and Methods. Nat Genet (2016) 48:1284–7. doi: 10.1038/ng.3656 PubMed DOI PMC
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. . A Reference Panel of 64,976 Haplotypes for Genotype Imputation. Nat Genet (2016) 48:1279–83. doi: 10.1038/ng.3643 PubMed DOI PMC
Campa D, Rizzato C, Capurso G, Giese N, Funel N, Greenhalf W, et al. . Genetic Susceptibility to Pancreatic Cancer and Its Functional Characterisation: The PANcreatic Disease ReseArch (PANDoRA) Consortium. Dig Liver Dis (2013) 45:95–9. doi: 10.1016/j.dld.2012.09.014 PubMed DOI
Riboli E, Hunt K, Slimani N, Ferrari P, Norat T, Fahey M, et al. . European Prospective Investigation Into Cancer and Nutrition (EPIC): Study Populations and Data Collection. Public Health Nutr (2002) 5:1113–24. doi: 10.1079/phn2002394 PubMed DOI
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. . PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet (2007) 81:559–75. doi: 10.1086/519795 PubMed DOI PMC
Graham JW. Missing Data Analysis: Making It Work in the Real World. Annu Rev Psychol (2009) 60:549–76. doi: 10.1146/annurev.psych.58.110405.085530 PubMed DOI
van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate Imputation by Chained Equations in R. J Stat Softw (2011) 45:1–67. doi: 10.18637/jss.v045.i03 DOI
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PloS Comput Biol (2015) 11:1–19. doi: 10.1371/journal.pcbi.1004219 PubMed DOI PMC
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. . The Genotype-Tissue Expression (GTEx) Project. Nat Genet (2013) 45:580–5. doi: 10.1038/ng.2653 PubMed DOI PMC
Ward LD, Kellis M. HaploReg V4: Systematic Mining of Putative Causal Variants, Cell Types, Regulators and Target Genes for Human Complex Traits and Disease. Nucleic Acids Res (2016) 44:D877–81. doi: 10.1093/nar/gkv1340 PubMed DOI PMC
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. . Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res (2012) 22:1790–7. doi: 10.1101/gr.137323.112 PubMed DOI PMC
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res (2019) 47:W556–60. doi: 10.1093/nar/gkz430 PubMed DOI PMC
Kim K, Jang I, Kim M, Choi J, Kim MS, Lee B, et al. . 3DIV Update for 2021: A Comprehensive Resource of 3D Genome and 3D Cancer Genome. Nucleic Acids Res (2021) 49:D38–46. doi: 10.1093/nar/gkaa1078 PubMed DOI PMC
Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res (2020) 48:W185–92. doi: 10.1093/NAR/GKAA420 PubMed DOI PMC
Ghoussaini M, Mountjoy E, Carmona M, Peat G, Schmidt EM, Hercules A, et al. . Open Targets Genetics: Systematic Identification of Trait-Associated Genes Using Large-Scale Genetics and Functional Genomics. Nucleic Acids Res (2021) 49:D1311–20. doi: 10.1093/nar/gkaa840 PubMed DOI PMC
Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional Mapping and Annotation of Genetic Associations With FUMA. Nat Commun (2017) 8:1826. doi: 10.1038/s41467-017-01261-5 PubMed DOI PMC
Grarup N, Moltke I, Andersen MK, Bjerregaard P, Larsen CVL, Dahl-Petersen IK, et al. . Identification of Novel High-Impact Recessively Inherited Type 2 Diabetes Risk Variants in the Greenlandic Population. Diabetologia (2018) 61:2005–15. doi: 10.1007/s00125-018-4659-2 PubMed DOI PMC
Zhu D, Yin J, Liang C, Luo X, Lv D, Dai Z, et al. . CACNA1C (Rs1006737) may be a Susceptibility Gene for Schizophrenia: An Updated Meta-Analysis. Brain Behav (2019) 9:e01292. doi: 10.1002/brb3.1292 PubMed DOI PMC
Hebbar P, Nizam R, Melhem M, Alkayal F, Elkum N, Elsa John S, et al. . Genome-Wide Association Study Identifies Novel Recessive Genetic Variants for High TGs in an Arab Population. J Lipid Res (2018) 59:1951–96. doi: 10.1194/jlr.P080218 PubMed DOI PMC
Power RA, Keller MC, Ripke S, Abdellaoui A, Wray NR, Sullivan PF, et al. . A Recessive Genetic Model and Runs of Homozygosity in Major Depressive Disorder. Am J Med Genet Part B Neuropsychiatr Genet (2014) 165:157–66. doi: 10.1002/ajmg.b.32217 PubMed DOI PMC
Camargo M, Rivera D, Moreno L, Lidral AC, Harper U, Jones M, et al. . GWAS Reveals New Recessive Loci Associated With Non-Syndromic Facial Clefting. Eur J Med Genet (2012) 55:510–4. doi: 10.1016/j.ejmg.2012.06.005 PubMed DOI PMC
Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. . Shared Genetic Origin of Asthma, Hay Fever and Eczema Elucidates Allergic Disease Biology. Nat Genet (2017) 49:1752–7. doi: 10.1038/ng.3985 PubMed DOI PMC
Midha S, Chawla S, Garg PK. Modifiable and Non-Modifiable Risk Factors for Pancreatic Cancer: A Review. Cancer Lett (2016) 381:269–77. doi: 10.1016/j.canlet.2016.07.022 PubMed DOI
Li D, Duell EJ, Yu K, Risch HA, Olson SH, Kooperberg C, et al. . Pathway Analysis of Genome-Wide Association Study Data Highlights Pancreatic Development Genes as Susceptibility Factors for Pancreatic Cancer. Carcinogenesis (2012) 33:1384–90. doi: 10.1093/carcin/bgs151 PubMed DOI PMC
Piao J, Zhu L, Sun J, Li N, Dong B, Yang Y, et al. . High Expression of CDK1 and BUB1 Predicts Poor Prognosis of Pancreatic Ductal Adenocarcinoma. Gene (2019) 701:15–22. doi: 10.1016/j.gene.2019.02.081 PubMed DOI
Katoh Y, Katoh M. Identification and Characterization of ARHGAP27 Gene in Silico. Int J Mol Med (2004) 14:943–7. doi: 10.3892/ijmm.14.5.943 PubMed DOI
Huang Y, Ying K, Xie Y, Zhou Z, Wang W, Tang R, et al. . Cloning and Characterization of a Novel Human Leptin Receptor Overlapping Transcript-Like 1 Gene (LEPROTL1). Biochim Biophys Acta Gene Struct Expr (2001) 1517:327–31. doi: 10.1016/S0167-4781(00)00266-9 PubMed DOI
Touvier T, Conte-Auriol F, Briand O, Cudejko C, Paumelle R, Caron S, et al. . LEPROT and LEPROTL1 Cooperatively Decrease Hepatic Growth Hormone Action in Mice. J Clin Invest (2009) 119:3830–8. doi: 10.1172/JCI34997 PubMed DOI PMC
Aghdassi AA, John DS, Sendler M, Storck C, van den Brandt C, Krüger B, et al. . Absence of the Neutrophil Serine Protease Cathepsin G Decreases Neutrophil Granulocyte Infiltration But Does Not Change the Severity of Acute Pancreatitis. Sci Rep (2019) 9:16774. doi: 10.1038/s41598-019-53293-0 PubMed DOI PMC
Zhang YD, Hurson AN, Zhang H, Choudhury PP, Easton DF, Milne RL, et al. . Assessment of Polygenic Architecture and Risk Prediction Based on Common Variants Across Fourteen Cancers. Nat Commun (2020) 11:1–13. doi: 10.1038/s41467-020-16483-3 PubMed DOI PMC
Torkamani A, Wineinger NE, Topol EJ. The Personal and Clinical Utility of Polygenic Risk Scores. Nat Rev Genet (2018) 19:581–90. doi: 10.1038/s41576-018-0018-x PubMed DOI
Klein AP, Lindström S, Mendelsohn JB, Steplowski E, Arslan AA, Bueno-de-Mesquita HB, et al. . An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PloS One (2013) 8:e72311. doi: 10.1371/journal.pone.0072311 PubMed DOI PMC