Apnea Detection in Polysomnographic Recordings Using Machine Learning Techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS20/146/OHK4/2T/17
Grant Agency of the Czech Technical University in Prague
SGS21/140/OHK4/2T/17
Grant Agency of the Czech Technical University in Prague
NV18-07-00272
MH CZ---DRO (National Institute of Mental Health-NIMH, IN: 00023752), by project LO1611 under the NPU I program, by Ministry of Health of the Czech Republic
PubMed
34943539
PubMed Central
PMC8700500
DOI
10.3390/diagnostics11122302
PII: diagnostics11122302
Knihovny.cz E-zdroje
- Klíčová slova
- CNN, apnea, sleep EEG records,
- Publikační typ
- časopisecké články MeSH
Sleep disorders are diagnosed in sleep laboratories by polysomnography, a multi-parameter examination that monitors biological signals during sleep. The subsequent evaluation of the obtained records is very time-consuming. The goal of this study was to create an automatic system for evaluation of the airflow and SpO2 channels of polysomnography records, through the use of machine learning techniques and a large database, for apnea and desaturation detection (which is unusual in other studies). To that end, a convolutional neural network (CNN) was designed using hyperparameter optimization. It was then trained and tested for apnea and desaturation. The proposed CNN was compared with the commonly used k-nearest neighbors (k-NN) method. The classifiers were designed based on nasal airflow and blood oxygen saturation signals. The final neural network accuracy for apnea detection reached 84%, and that for desaturation detection was 74%, while the k-NN classifier reached accuracies of 83% and 64% for apnea detection and desaturation detection, respectively.
3rd Faculty of Medicine Charles University 10000 Prague Czech Republic
Faculty of Biomedical Engineering Czech Technical University Prague 27201 Kladno Czech Republic
National Institute of Mental Health 25067 Klecany Czech Republic
Zobrazit více v PubMed
Miller M.A. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders. Front. Neurol. 2015;6:224. doi: 10.3389/fneur.2015.00224. PubMed DOI PMC
Bousquet J., NG K. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach. World Health Organization; Geneva, Switzerland: 2007.
Kim S.J., Lee J.H., Lee D.Y., Jhoo J.H., Woo J.I. Neurocognitive Dysfunction Associated With Sleep Quality and Sleep Apnea in Patients With Mild Cognitive Impairment. Am. J. Geriatr. Psychiatry. 2011;19:374–381. doi: 10.1097/JGP.0b013e3181e9b976. PubMed DOI
Guarnieri B., Adorni F., Musicco M., Appollonio I., Bonanni E., Caffarra P., Caltagirone C., Cerroni G., Concari L., Cosentino F., et al. Prevalence of Sleep Disturbances in Mild Cognitive Impairment and Dementing Disorders. Dement. Geriatr. Cogn. Disord. 2012;33:50–58. doi: 10.1159/000335363. PubMed DOI PMC
Zhou J., Wu X.M., Zeng W.J. Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine. J. Clin. Monit. Comput. 2015;29:767–772. doi: 10.1007/s10877-015-9664-0. PubMed DOI
Iber C., Ancoli-Israel S., Chesson A., Quan S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine; Westchester, IL, USA: 2007. p. 59.
Ankitha V., Manimegalai P., Jose P.S.H., Raji P. Literature Review on Sleep APNEA Analysis by Machine Learning Algorithms Using ECG Signals. J. Phys. Conf. Ser. 2021;1937:012054. doi: 10.1088/1742-6596/1937/1/012054. DOI
Usak S.A.M., Sugiman S., Sha’ari N.A.S., Kaneson M., Abdullah H., Noor N.M., Patti C.R., Dissanyaka C., Cvetkovic D. EEG biomarker of Sleep Apnoea using discrete wavelet transform and approximate entropy; Proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA); Kuching, Malaysia. 12–14 September 2017; pp. 330–334. DOI
Zemouri R., Racoceanu D. Deep Learning for Biomedical Data Analysis. Springer; Cham, Switzerland: 2021. Innovative deep learning approach for biomedical data instantiation and visualization; pp. 171–196. DOI
Korkalainen H., Aakko J., Nikkonen S., Kainulainen S., Leino A., Duce B., Afara I.O., Myllymaa S., Töyräs J., Leppänen T. Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea. IEEE J. Biomed. Health Inform. 2020;24:2073–2081. doi: 10.1109/JBHI.2019.2951346. PubMed DOI
Zhao X., Wang X., Yang T., Ji S., Wang H., Wang J., Wang Y., Wu Q. Classification of sleep apnea based on EEG sub-band signal characteristics. Sci. Rep. 2021;11:5824. doi: 10.1038/s41598-021-85138-0. PubMed DOI PMC
Zemouri R., Zerhouni N., Racoceanu D. Deep Learning in the Biomedical Applications: Recent and Future Status. Appl. Sci. 2019;9:1526. doi: 10.3390/app9081526. DOI
Almuhammadi W.S., Aboalayon K.A.I., Faezipour M. Efficient obstructive sleep apnea classification based on EEG signals; Proceedings of the 2015 Long Island Systems, Applications and Technology; Farmingdale, NY, USA. 1 May 2015; pp. 1–6. DOI
Vimala V., Ramar K., Ettappan M. An Intelligent Sleep Apnea Classification System Based on EEG Signals. J. Med. Syst. 2019;43:36. doi: 10.1007/s10916-018-1146-8. PubMed DOI
Nassi T.E., Ganglberger W., Sun H., Bucklin A.A., Biswal S., van Putten M.J.A.M., Thomas R.J., Westover M.B. Automated Respiratory Event Detection Using Deep Neural Networks. arXiv. 20212101.04635
Bricout A., Fontecave-Jallon J., Pépin J.L., Guméry P.Y. Accelerometry-derived respiratory index estimating apnea-hypopnea index for sleep apnea screening. Comput. Methods Progr. Biomed. 2021;207:106209. doi: 10.1016/j.cmpb.2021.106209. PubMed DOI
Zhou Y., Shu D., Xu H., Qiu Y., Zhou P., Ruan W., Qin G., Jin J., Zhu H., Ying K., et al. Validation of novel automatic ultra-wideband radar for sleep apnea detection. J. Thorac. Dis. 2020;12:1286–1295. doi: 10.21037/jtd.2020.02.59. PubMed DOI PMC
Bozkurt F., Uçar M., Bozkurt M., Bilgin C. Detection of Abnormal Respiratory Events with Single Channel ECG and Hybrid Machine Learning Model in Patients with Obstructive Sleep Apnea. IRBM. 2020;41:241–251. doi: 10.1016/j.irbm.2020.05.006. DOI
Varady P., Micsik T., Benedek S., Benyo Z. A novel method for the detection of apnea and hypopnea events in respiration signals. IEEE Trans. Biomed. Eng. 2002;49:936–942. doi: 10.1109/TBME.2002.802009. PubMed DOI
Pathinarupothi R.K., Vinaykumar R., Rangan E., Gopalakrishnan E., Soman K.P. Instantaneous heart rate as a robust feature for sleep apnea severity detection using deep learning; Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI); Orlando, FL, USA. 16–19 February 2017; pp. 293–296. DOI
Biswal S., Sun H., Goparaju B., Westover M.B., Sun J., Bianchi M.T. Expert-level sleep scoring with deep neural networks. J. Am. Med. Inform. Assoc. 2018;25:1643–1650. doi: 10.1093/jamia/ocy131. PubMed DOI PMC
Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997;9:1735–1780. doi: 10.1162/neco.1997.9.8.1735. PubMed DOI
Bai Y., Zhang L., Wan D., Xie Y., Deng H. Detection of sleep apnea syndrome by CNN based on ECG. J. Phys. Conf. Ser. 2021;1757:012043. doi: 10.1088/1742-6596/1757/1/012043. DOI
Dey D., Chaudhuri S., Munshi S. Obstructive sleep apnoea detection using convolutional neural network based deep learning framework. Biomed. Eng. Lett. 2018;8:95–100. doi: 10.1007/s13534-017-0055-y. PubMed DOI PMC
Urtnasan E., Park J.U., Joo E.Y., Lee K.J. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network. J. Med. Syst. 2018;42:104. doi: 10.1007/s10916-018-0963-0. PubMed DOI
Haidar R., Koprinska I., Jeffries B. Neural Information Processing. Springer; Cham, Switzerland: 2017. Sleep apnea event detection from nasal airflow using convolutional neural networks; pp. 819–827. DOI
Haidar R., McCloskey S., Koprinska I., Jeffries B. Convolutional Neural Networks on Multiple Respiratory Channels to Detect Hypopnea and Obstructive Apnea Events; Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN); Rio de Janeiro, Brazil. 8–13 July 2018; pp. 1–7. DOI
Cen L., Yu Z.L., Kluge T., Ser W. Automatic System for Obstructive Sleep Apnea Events Detection Using Convolutional Neural Network; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 18–21 July 2018; pp. 3975–3978. PubMed DOI
Hoaglin D.C. John W. Tukey and Data Analysis. Stat. Sci. 2003;18:311–318. doi: 10.1214/ss/1076102418. DOI
Masko D., Hensman P. The Impact of Imbalanced Training Data for Convolutional Neural Networks. KTH Royal Institute of Technology; Stockholm, Sweden: 2015.
Choi S.H., Yoon H., Kim H.S., Kim H.B., Kwon H.B., Oh S.M., Lee Y.J., Park K.S. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks. Comput. Biol. Med. 2018;100:123–131. doi: 10.1016/j.compbiomed.2018.06.028. PubMed DOI
Kulkas A., Tiihonen P., Julkunen P., Mervaala E., Töyräs J. Desaturation delay, parameter for evaluating severity of sleep disordered breathing; Proceedings of the World Congress on Medical Physics and Biomedical Engineering; Beijing, China. 26–31 May 2012; pp. 336–339.
Srivastava N., Hinton G.E., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.
Agarap A.F. Deep Learning using Rectified Linear Units (ReLU) arXiv. 20181803.08375
de Boer P.T., Kroese D.P., Mannor S., Rubinstein R.Y. A Tutorial on the Cross-Entropy Method. Ann. Oper. Res. 2005;134:19–67. doi: 10.1007/s10479-005-5724-z. DOI
Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization. arXiv. 20151412.6980
Chicco D. Ten quick tips for machine learning in computational biology. BioData Min. 2017;10:35. doi: 10.1186/s13040-017-0155-3. PubMed DOI PMC
Ramachandran A., Karuppiah A. A Survey on Recent Advances in Machine Learning Based Sleep Apnea Detection Systems. Healthcare. 2021;9:914. doi: 10.3390/healthcare9070914. PubMed DOI PMC
Çimtay Y., Ekmekcioglu E. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition. Sensors. 2020;20:2034. doi: 10.3390/s20072034. PubMed DOI PMC
You Y., Gitman I., Ginsburg B. Large batch training of convolutional networks. arXiv. 20171708.03888
Sharma H., Sharma K. An algorithm for sleep apnea detection from single-lead ECG using Hermite Basis functions. Comput. Biol. Med. 2016;77:116–124. doi: 10.1016/j.compbiomed.2016.08.012. PubMed DOI
Rezaei S., Moharreri S., Ghiasi S., Parvaneh S. Diagnosis of sleep apnea by evaluating points distribution in poincare plot of RR intervals; Proceedings of the 2017 Computing in Cardiology (CinC); Rennes, France. 24–27 September 2017; pp. 1–4.
Jezzini A., Ayache M., Elkhansa L., al abidin Ibrahim Z. ECG classification for sleep apnea detection; Proceedings of the 2015 International Conference on Advances in Biomedical Engineering (ICABME); Beirut, Lebanon. 16–18 September 2015; pp. 301–304. DOI
Hassan A.R., Haque M. Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating. Biocybern. Biomed. Eng. 2015;36:256–266. doi: 10.1016/j.bbe.2015.11.003. DOI
Mendez M.O., Bianchi A.M., Matteucci M., Cerutti S., Penzel T. Sleep Apnea Screening by Autoregressive Models From a Single ECG Lead. IEEE Trans. Biomed. Eng. 2009;56:2838–2850. doi: 10.1109/TBME.2009.2029563. PubMed DOI
McClure K., Erdreich B., Bates J.H.T., McGinnis R.S., Masquelin A., Wshah S. Classification and Detection of Breathing Patterns with Wearable Sensors and Deep Learning. Sensors. 2020;20:6481. doi: 10.3390/s20226481. PubMed DOI PMC
Bsoul M., Minn H., Tamil L. Apnea MedAssist. IEEE Trans. Inf. Technol. Biomed. 2011;15:416–427. doi: 10.1109/TITB.2010.2087386. PubMed DOI
Steenkiste T.V., Groenendaal W., Deschrijver D., Dhaene T. Automated Sleep Apnea Detection in Raw Respiratory Signals Using Long Short-Term Memory Neural Networks. IEEE J. Biomed. Health Inform. 2019;23:2354–2364. doi: 10.1109/JBHI.2018.2886064. PubMed DOI
Mostafa S.S., Mendonca F., Morgado-Dias F., Ravelo-Garcia A. SpO2 based sleep apnea detection using deep learning; Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES); Larnaca, Cyprus. 20–23 October 2017; pp. 91–96. DOI
ElMoaqet H., Eid M., Glos M., Ryalat M., Penzel T. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals. Sensors. 2020;20:5037. doi: 10.3390/s20185037. PubMed DOI PMC
Singh S., Majumder S. A novel approach osa detection using single-lead ECG scalogram based on deep neural network. J. Mech. Med. Biol. 2019;19:1950026. doi: 10.1142/S021951941950026X. DOI
Mostafa S., Mendonça F., García A.G., Julia-Serda G., Morgado-Dias F. Multi-Objective Hyperparameter Optimization of Convolutional Neural Network for Obstructive Sleep Apnea Detection. IEEE Access. 2020;8:129586–129599. doi: 10.1109/ACCESS.2020.3009149. DOI
Almazaydeh L., Elleithy K., Faezipour M., Abushakra A. Apnea Detection based on Respiratory Signal Classification. Procedia Comput. Sci. 2013;21:310–316. doi: 10.1016/j.procs.2013.09.041. DOI
Janbakhshi P., Shamsollahi M. Sleep Apnea Detection from Single-Lead ECG Using Features Based on ECG-Derived Respiration (EDR) Signals. IRBM. 2018;39:206–218. doi: 10.1016/j.irbm.2018.03.002. DOI
Quan S.F., Howard B.V., Iber C., Kiley J.P., Nieto F.J., O’Connor G.T., Rapoport D.M., Redline S., Robbins J., Samet J.M., et al. The Sleep Heart Health Study. Sleep. 1997;20:1077–1085. doi: 10.1093/sleep/20.12.1077. PubMed DOI
Hassan A.R. Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting. Biomed. Signal Process. Control. 2016;29:22–30. doi: 10.1016/j.bspc.2016.05.009. DOI
Varon C., Caicedo A., Testelmans D., Buyse B., Huffel S. A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead ECG. IEEE Trans. Biomed. Eng. 2015;62:2269–2278. doi: 10.1109/TBME.2015.2422378. PubMed DOI
Kumar T., Kanhangad V. Automated obstructive sleep apnoea detection using symmetrically-weighted local binary pattern. Electron. Lett. 2016;53:212–214. doi: 10.1049/el.2016.3664. DOI
Chang H.Y., Yeh C.Y., Lee C.T., Lin C.C. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram. Sensors. 2020;20:4157. doi: 10.3390/s20154157. PubMed DOI PMC
Sheta A., Turabieh H., Thaher T., Too J., Mafarja M., Hossain M.S., Surani S.R. Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers. Appl. Sci. 2021;11:6622. doi: 10.3390/app11146622. DOI