Ultra-Hypofractionated Proton Therapy in Localized Prostate Cancer: Passive Scattering versus Intensity-Modulated Proton Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34945783
PubMed Central
PMC8709262
DOI
10.3390/jpm11121311
PII: jpm11121311
Knihovny.cz E-zdroje
- Klíčová slova
- prostate, proton therapy, ultra-hypofractionated radiotherapy,
- Publikační typ
- časopisecké články MeSH
Few studies have directly compared passive scattering (PS) to intensity-modulated proton therapy (IMPT) in the delivery of ultra-hypofractionated proton beams to the localized prostate cancer (PCa). In this preliminary study involving five patients previously treated with CyberKnife, treatment plans were created for PS and IMPT (36.25 CGE in five fractions with two opposing fields) to compare the dosimetric parameters to the planning target volume (PTV) and organs-at-risk (OAR: rectum, bladder, femoral heads). Both plans met the acceptance criteria. Significant differences were observed in the minimum and maximum doses to the PTV. The mean dose to the PTV was lower for PS (35.62 ± 0.26 vs. 37.18 ± 0.14; p = 0.002). Target coverage (D98%) was better for IMPT (96.79% vs. 99.10%; p = 0.004). IMPT resulted in significantly lower mean doses to the rectum (16.75 CGE vs. 6.88 CGE; p = 0.004) and bladder (17.69 CGE vs. 5.98 CGE p = 0.002). High dose to the rectum (V36.25 CGE) were lower with PS, but not significantly opposite to high dose to the bladder. No significant differences were observed in mean conformity index values, with a non-significant trend towards higher mean homogeneity index values for PS. Non-significant differences in the gamma index for both fields were observed. These findings suggest that both PS and IMPT ultra-hypofractionated proton therapy for PCa are highly precise, offering good target coverage and sparing of normal tissues and OARs.
Dzhelepov Laboratory of Nuclear Problems Joint Institute for Nuclear Research 141980 Dubna Russia
Electroradiology Department Poznan University of Medical Sciences 61 688 Poznan Poland
Greater Poland Cancer Centre Department of Medical Physics 61 688 Poznan Poland
Greater Poland Cancer Centre Department of Radiotherapy 1 st 61 886 Poznan Poland
Zobrazit více v PubMed
Seppälä J., Suilamo S., Tenhunen M., Sailas L., Virsunen H., Kaleva E., Keyriläinen J. Dosimetric Comparison and Evaluation of 4 Stereotactic Body Radiotherapy Techniques for the Treatment of Prostate Cancer. Technol. Cancer Res. Treat. 2017;16:238–245. doi: 10.1177/1533034616682156. PubMed DOI PMC
Jiang P., Krockenberger K., Vonthein R., Tereszczuk J., Schreiber A., Liebau S., Huttenlocher S., Imhoff D., Balermpas P., Keller C., et al. Hypo-Fractionated SBRT for Localized Prostate Cancer: A German Bi-Center Single Treatment Group Feasibility Trial. Radiat. Oncol. 2017;12:1–7. doi: 10.1186/s13014-017-0872-2. PubMed DOI PMC
Avkshtol V., Dong Y., Hayes S.B., Hallman M.A., Price R.A., Sobczak M.L., Horwitz E.M., Zaorsky N.G. A Comparison of Robotic Arm versus Gantry Linear Accelerator Stereotactic Body Radiation Therapy for Prostate Cancer. Res. Rep. Urol. 2016;8:145–158. PubMed PMC
Slater J.M., Slater J.D., Kang J.I., Namihas I.C., Jabola B.R., Brown K., Grove R., Watt C., Bush D.A. Hypofractionated Proton Therapy in Early Prostate Cancer: Results of a Phase I/II Trial at Loma Linda University. Int. J. Particle Therapy. 2019;6:1–9. doi: 10.14338/IJPT-19-00057. PubMed DOI PMC
Moteabbed M., Trofimov A., Khan F.H., Wang Y., Sharp G.C., Zietman A.L., Efstathiou J.A., Lu H.M. Impact of Interfractional Motion on Hypofractionated Pencil Beam Scanning Proton Therapy and VMAT Delivery for Prostate Cancer. Med. Phys. 2018;45:4011–4019. doi: 10.1002/mp.13091. PubMed DOI
Kim Y.J., Cho K.H., Pyo H.R., Lee K.H., Moon S.H., Kim T.H., Shin K.H., Kim J.Y., Lee S.B., Nam B.H. A Phase II Study of Hypofractionated Proton Therapy for Prostate Cancer. Acta Oncol. 2013;52:477–485. doi: 10.3109/0284186X.2013.764011. PubMed DOI
Johansson S., Åström L., Sandin F., Isacsson U., Montelius A., Turesson I. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer. Prostate Cancer. 2012;2012:654861. doi: 10.1155/2012/654861. PubMed DOI PMC
Gleeson I. A Comparison of a Moderately Hypofractionated IMRT Planning Technique Used in a Randomised UK External Beam Radiotherapy Trial with an In-House Technique for Localised Prostate Cancer. Rep. Pract. Oncol. Radiother. 2020;25:360–366. doi: 10.1016/j.rpor.2020.03.010. PubMed DOI PMC
Loeffler J.S., Durante M. Charged Particle Therapy-Optimization, Challenges and Future Directions. Nat. Rev. Clin. Oncol. 2013;10:411–424. doi: 10.1038/nrclinonc.2013.79. PubMed DOI
Kole T.P., Nichols R.C., Lei S., Wu B., Huh S.N., Morris C.G., Lee S., Tong M., Mendenhall N.P., Dritschilo A., et al. A Dosimetric Comparison of Ultra-Hypofractionated Passively Scattered Proton Radiotherapy and Stereotactic Body Radiotherapy (SBRT) in the Definitive Treatment of Localized Prostate Cancer. Acta Oncol. 2015;54:825–831. doi: 10.3109/0284186X.2014.953260. PubMed DOI
Vargas C.E., Hartsell W.F., Dunn M., Keole S.R., Doh L., Chang J., Larson G.L. Image-Guided Hypofractionated Proton Beam Therapy for Low-Risk Prostate Cancer: Analysis of Quality of Life and Toxicity, PCG GU 002. Rep. Pract. Oncol. Radiother. 2016;21:207–212. doi: 10.1016/j.rpor.2016.01.002. PubMed DOI PMC
Vargas C., Fryer A., Mahajan C., Indelicato D., Horne D., Chellini A., McKenzie C., Lawlor P., Henderson R., Li Z., et al. Dose-Volume Comparison of Proton Therapy and Intensity-Modulated Radiotherapy for Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:744–751. doi: 10.1016/j.ijrobp.2007.07.2335. PubMed DOI
Kubeš J., Vondráček V., Andrlik M., Navrátil M., Sláviková S., Vítek P., Rosina J., Abrahámová J., Prausová J., Grebenyuk A., et al. Extreme Hypofractionated Proton Radiotherapy for Prostate Cancer Using Pencil Beam Scanning: Dosimetry, Acute Toxicity and Preliminary Results. J. Med. Imaging Radiat. Oncol. 2019;63:829–835. doi: 10.1111/1754-9485.12947. PubMed DOI
Vargas C.E., Hartsell W.F., Dunn M., Keole S.R., Doh L., Eisenbeisz E., Larson G.L. Hypofractionated Versus Standard Fractionated Proton-Beam Therapy for Low-Risk Prostate Cancer: Interim Results of a Randomized Trial PCG GU 002. Am. J. Clin. Oncol. Cancer Clin. Trials. 2018;41:115–120. doi: 10.1097/COC.0000000000000241. PubMed DOI
Kase Y., Yamashita H., Fuji H., Yamamoto Y., Pu Y., Tsukishima C., Murayama S. A Treatment Planning Comparison of Passive-Scattering and Intensity-Modulated Proton Therapy for Typical Tumor Sites. J. Radiat. Res. 2012;53:272–280. doi: 10.1269/jrr.11136. PubMed DOI
Mishra M.v., Khairnar R., Bentzen S.M., Larson G., Tsai H., Sinesi C., Vargas C., Laramore G., Rossi C., Rosen L., et al. Proton Beam Therapy Delivered Using Pencil Beam Scanning vs. Passive Scattering/Uniform Scanning for Localized Prostate Cancer: Comparative Toxicity Analysis of PCG 001-09. Clin. Transl. Radiat. Oncol. 2019;19:80–86. doi: 10.1016/j.ctro.2019.08.006. PubMed DOI PMC
Mishra M.v., Khairnar R., Bentzen S.M., Larson G., Tsai H., Sinesi C., Vargas C., Laramore G., Rossi C., Rosen L., et al. Patient Reported Outcomes Following Proton Pencil Beam Scanning vs. Passive Scatter/Uniform Scanning for Localized Prostate Cancer: Secondary Analysis of PCG 001-09. Clin. Transl. Radiat. Oncol. 2020;22:50–54. doi: 10.1016/j.ctro.2020.03.003. PubMed DOI PMC
Pugh T.J., Munsell M.F., Choi S., Nguyen Q.N., Mathai B., Zhu X.R., Sahoo N., Gillin M., Johnson J.L., Amos R.A., et al. Quality of Life and Toxicity from Passively Scattered and Spot-Scanning Proton Beam Therapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013;87:946–953. doi: 10.1016/j.ijrobp.2013.08.032. PubMed DOI PMC
Kubeš J., Haas A., Vondráček V., Andrlík M., Navrátil M., Sláviková S., Vítek P., Dědečková K., Prausová J., Ondrová B., et al. Ultrahypofractionated Proton Radiation Therapy in the Treatment of Low and Intermediate-Risk Prostate Cancer-5-Year Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2021;110:1090–1097. doi: 10.1016/j.ijrobp.2021.02.014. PubMed DOI
Shipulin К.N., Mytsin G.V. 3D Radiatherapy treatment planning software. Медицинская Физика. 2020;3:9–26.
Devic S., Seuntjens J., Sham E., Podgorsak E.B., Schmidtlein C.R., Kirov A.S., Soares C.G. Precise Radiochromic Film Dosimetry Using a Flat-Bed Document Scanner. Med. Phys. 2005;32:2245–2253. doi: 10.1118/1.1929253. PubMed DOI
Park J.I., Park J.M., Kim J.-I., Park S.Y., Ye S.J. Gamma-Index Method Sensitivity for Gauging Plan Delivery Accuracy of Volumetric Modulated Arc Therapy. Phys. Med. 2015;31:1118–1122. doi: 10.1016/j.ejmp.2015.08.005. PubMed DOI
Hussein M., Rowshanfarzad P., Ebert M.A., Nisbet A., Clark C.H. A Comparison of the Gamma Index Analysis in Various Commercial IMRT/VMAT QA Systems. Radiother. Oncol. 2013;109:370–376. doi: 10.1016/j.radonc.2013.08.048. PubMed DOI
Menzel H.G. The International Commission on Radiation Units and Measurements. J. ICRU. 2010;10:1–106. doi: 10.1093/jicru/ndq001. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 23 March 2021)]. Available online: https://www.R-project.org/
Wessels B.W., Brindle J.M., Cheng C.-W., Rhodes C.R., Albani D.M., Sohn J.W., Lo S.S., Ellis R.J., Mansur D.B. Retrospective Prostate Treatment Plan Comparison for Proton, Tomotherapy, and Cyberknife Therapy. Int. J. Particle Therapy. 2015;2:385–393. doi: 10.14338/IJPT-15-00004.1. DOI
Moteabbed M., Trofimov A., Sharp G.C., Wang Y., Zietman A.L., Efstathiou J.A., Lu H.M. Proton Therapy of Prostate Cancer by Anterior-Oblique Beams: Implications of Setup and Anatomy Variations. Phys. Med. Biol. 2017;62:1644–1660. doi: 10.1088/1361-6560/62/5/1644. PubMed DOI
Tran A., Zhang J., Woods K., Yu V., Nguyen D., Gustafson G., Rosen L., Sheng K. Treatment Planning Comparison of IMPT, VMAT and 4Π Radiotherapy for Prostate Cases. Radiat. Oncol. 2017;12:10. doi: 10.1186/s13014-016-0761-0. PubMed DOI PMC