Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures-Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction

. 2021 Dec 12 ; 11 (12) : . [epub] 20211212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947718

Grantová podpora
654360 EU-H2020 (NFFA)
LL2003 ERC-CZ
EP.M015157/1 Engineering and Physical Sciences Research Council
SEV-2017-0706 Spanish Research Agency
2017SGR327 AGAUR

Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of 'hot-injection' processes was avoided, focusing on 'non-injection' ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2-xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained.

Zobrazit více v PubMed

Willhammar T., Sentosun K., Mourdikoudis S., Goris B., Kurttepeli M., Bercx M., Lamoen D., Partoens B., Pastoriza-Santos I., Perez-Juste J., et al. Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nat. Commun. 2017;8:14925. doi: 10.1038/ncomms14925. PubMed DOI PMC

Yang D., Zhu Q., Chen C., Liu H., Liu Z., Zhao H., Zhang X., Liu S., Han B. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 2019;10:677. doi: 10.1038/s41467-019-08653-9. PubMed DOI PMC

Hessel C.M., Pattani V.P., Rasch M., Panthani M.G., Koo B., Tunnell J.W., Korgel B.A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11:2560. doi: 10.1021/nl201400z. PubMed DOI PMC

Riha S.C., Johnson D.C., Prieto A.L. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. J. Am. Chem. Soc. 2011;133:1383. doi: 10.1021/ja106254h. PubMed DOI

Chen X.Q., Li Z., Dou S.X. Ambient facile synthesis of gram-scale selenide nanostructures from commercial copper and selenium powder. ACS Appl. Mater. Interfaces. 2015;7:13295. doi: 10.1021/acsami.5b01085. PubMed DOI

Xue M.-Z., Zhou Y.-N., Zhang B., Yu L., Zhang H., Fu Z.-W. Fabrication and electrochemical characterization of copper selenide thin films by pulsed laser deposition. J. Electrochem. Soc. 2006;153:A2262. doi: 10.1149/1.2358854. DOI

Sibokoza S.B., Moloto M.J., Mtunzi F., Moloto N. Diphenyldiselenide mediated synthesis of copper selenide nanoparticles and their poly(methyl methacrylate) nanofibers. Asian J. Chem. 2018;30:1455. doi: 10.14233/ajchem.2018.21166. DOI

Balitskii O.A., Sytnyk M., Stangl J., Primetzhofer D., Groiss H., Heiss W. Tuning the localized surface plasmon resonance in Cu2−xSe nanocrystals by postsynthetic ligand exchange. ACS Appl. Mater. Interfaces. 2014;6:17770. doi: 10.1021/am504296y. PubMed DOI PMC

Zhu D., Wang L., Liu Z., Tang A. Effects of surface ligands on localized surface plasmon resonance and stabilization of Cu2−xSe nanocrystals. Appl. Surf. Sci. 2020;509:145327. doi: 10.1016/j.apsusc.2020.145327. DOI

Polavarapu L., Mourdikoudis S., Pastoriza-Santos I., Perez-Juste J. Nanocrystal engineering of noble metals and metal chalcogenides: Controlling the morphology, composition and crystallinity. CrystEngComm. 2015;17:3727. doi: 10.1039/C5CE00112A. DOI

Hardtdegen H., Mikulics M., Rieß S., Schuck M., Saltzmann T., Simon U., Longo M. Modern chemical synthesis methods towards low-dimensional phase change structures in the Ge-Sb-Te material system. Prog. Cryst. Growth Charact. Mater. 2015;61:27. doi: 10.1016/j.pcrysgrow.2015.10.001. DOI

Mikulics M., Hardtdegen H.H. Fully photon operated transmistor/all-optical switch based on a layered Ge1Sb2Te4 phase change medium. FlatChem. 2020;23:100186. doi: 10.1016/j.flatc.2020.100186. DOI

Chen X., Dai W., Qin F., Xu K., Xu H., Wu T., Li J., Luo W., Yang J. Low-dimensional copper selenide nanostructures: Controllable morphology and its dependence on electrocatalytic performance. ChemElectroChem. 2019;6:574. doi: 10.1002/celc.201801130. DOI

Zhu L., Gao F., Lv P., Zheng Y., Wang W., Zheng W. Facile synthesis of 3D flower-like Cu2−xSe nanostructures via a sacrificing template method and their excellent antibacterial activities. CrystEngComm. 2017;19:7253. doi: 10.1039/C7CE01750B. DOI

Chen H., Zou B., Wang N., Chen H., Zhang Z., Sun Y., Yu L., Tian Q., Chen Z., Hu J. Morphology-selective synthesis and wettability properties of well-aligned Cu2−xSe nanostructures on a copper substrate. J. Mater. Chem. 2011;21:3053. doi: 10.1039/c0jm02637a. DOI

Liu Y., Zhu D., Hu H., Swihart M.T., Wei W. Controlled synthesis of Cu2−xSe nanoparticles as near-infrared photothermal agents and irradiation wavelength dependence of their photothermal conversion efficiency. Langmuir. 2018;34:13905. doi: 10.1021/acs.langmuir.8b02133. PubMed DOI

Yan Y., Wang T., Liu H., Zhang S., Zhang H., Li M., Sun Q., Li Z. The release and detection of copper ions from ultrasmall theranostic Cu2−xSe nanoparticles. Nanoscale. 2019;11:11819. PubMed

Saldanha P.L., Brescia R., Prato M., Li H., Povia M., Manna L., Lesnyak V. Generalized one-pot synthesis of copper sulfide, selenide-sulfide and telluride-sulfide nanoparticles. Chem. Mater. 2014;26:1442. doi: 10.1021/cm4035598. DOI

Zhao T., Oh N., Jishkariani D., Zhang M., Wang H., Li N., Lee J.D., Zeng C., Muduli M., Choi H.-J., et al. General synthetic route to high-quality colloidal III-V semiconductor quantum dots based on pnictogen chlorides. J. Am. Chem. Soc. 2019;141:15145. doi: 10.1021/jacs.9b06652. PubMed DOI

Li W., Li K., Ye Y., Zhang S., Liu Y., Wang G., Liang C., Zhang H., Zhao H. Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots. Commun. Chem. 2021;4:10. doi: 10.1038/s42004-021-00449-7. PubMed DOI PMC

Xiao G., Ning J., Liu Z., Sui Y., Wang Y., Dong Q., Tian W., Liu B., Zou G., Zou B. Solution synthesis of copper selenide nanocrystals and their electrical transport properties. CrystEngComm. 2012;14:2139. doi: 10.1039/c2ce06270d. DOI

Mourdikoudis S., Liz-Marzan L.M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013;25:1465.

White S.L., Banerjee P., Jain P.K. Liquid-like cationic sub-lattice in copper selenide clusters. Nat. Commun. 2017;8:14514. PubMed PMC

Zobac O., Kroupa A., Zemanova A., Richter K.W. Experimental description of the Al-Cu binary phase diagram. Metal. Mater. Trans. A. 2019;50:3805. doi: 10.1007/s11661-019-05286-x. DOI

Dorfs D., Hartling T., Miszta K., Bigall N.C., Kim M.R., Genovese A., Falqui A., Povia M., Manna L. Reversible tenability of the near-infrared valence band plasmon resonance in Cu2−xSe nanocrystals. J. Am. Chem. Soc. 2011;133:11175. doi: 10.1021/ja2016284. PubMed DOI

Kriegel I., Jiang C., Rodriguez-Fernandez J., Schaller R.D., Talapin D.V., da Como E., Feldmann J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012;134:1583. doi: 10.1021/ja207798q. PubMed DOI

Coughlan C., Ibanez M., Dobrozhan O., Singh A., Cabo A., Ryan K.M. Compound copper chalcogenide nanocrystals. Chem. Rev. 2017;117:5865. doi: 10.1021/acs.chemrev.6b00376. PubMed DOI

Webber D.H., Buckley J.J., Antunez P.D., Brutchey R.L. Facile dissolution of selenium and tellurium in a thiol-amine solvent mixture under ambient conditions. Chem. Sci. 2014;5:2498. doi: 10.1039/c4sc00749b. DOI

Liu Y., Yao D., Shen L., Zhang H., Zhang X., Yang B. Alkythiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J. Am. Chem. Soc. 2012;134:7207. doi: 10.1021/ja300064t. PubMed DOI

Shao H., Huang Y., Lee H.S., Suh Y.J., Kim C.O. Effect of surfactants on the size and shape of cobalt nanoparticles synthesized by thermal decomposition. J. Appl. Phys. 2006;99:08N702. doi: 10.1063/1.2159421. DOI

Lesyuk R., Klein E., Yaremchuk I., Klinke C. Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale. 2018;10:20640. doi: 10.1039/C8NR06738D. PubMed DOI PMC

Gargioni C., Borzenkov M., D’Alfonso L., Sperandeo P., Polissi A., Cucca L., Dacarro G., Grisoli P., Pallavicini P., D’Agostino A., et al. Self-assembled monolayers of copper sulfide nanoparticles on glass as antibacterial coatings. Nanomaterials. 2020;10:352. doi: 10.3390/nano10020352. PubMed DOI PMC

D’Agostino A., editor. Materials Science and Metallurgy Course A: Metals and Alloys. University of Cambridge; Cambridge, UK: Lecture Notes.

Marin R., Lifante J., Besteiro L.V., Wang Z., Govorov A.O., Rivero F., Alfonso F., Sanz-Rodriguez F., Jaque D. Plasmonic copper sulfide nanoparticles enable dark contrast in optical coherence tomography. Adv. Healthc. Mater. 2020;9:1901627. doi: 10.1002/adhm.201901627. PubMed DOI

Chen L., Li G. Functions of 1-dodecanethiol in the synthesis and post-treatment of copper sulfide nanoparticles relevant to their photocatalytic applications. ACS Appl. Nano Mater. 2018;1:4587. doi: 10.1021/acsanm.8b00893. DOI

Green M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010;20:5797. doi: 10.1039/c0jm00007h. DOI

Becerra L.R., Murray C.B., Griffin R.G., Bawendi M.G. Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance. J. Chem. Phys. 1994;100:3297. doi: 10.1063/1.466420. DOI

Lorenz J.K., Ellis A.B. Surfactant-semiconductor interfaces: Perturbation of the photoluminescence of bulk cadmium selenide by adsorption of tri-n-octylphosphine oxide as a probe of solution aggregation with relevance to nanocrystal stabilization. J. Am. Chem. Soc. 1998;120:10970. doi: 10.1021/ja982278l. DOI

Abutbul R.E., Golan Y. ‘Beneficial impurities’ in colloidal synthesis of surfactant coated inorganic nanoparticles. Nanotechnology. 2021;32:102001. doi: 10.1088/1361-6528/abc0c7. PubMed DOI

Liz-Marzan L.M., Kagan C.R., Millstone J.E. Reproducibility in nanocrystal synthesis? Watch out for impurities. ACS Nano. 2020;14:6359. doi: 10.1021/acsnano.0c04709. PubMed DOI

Peng X., Manna L., Wang W., Wickham J., Scher E., Kadanavich A., Alivisatos A.P. Shape control of CdSe nanocrystals. Nature. 2020;404:59. doi: 10.1038/35003535. PubMed DOI

Petrovic M., Gilic M., Cirkovic J., Romcevic M., Romcevic N., Trajic J., Yahia I. Optical properties of CuSe thin films—Band gap determination. Sci. Sinter. 2017;49:167. doi: 10.2298/SOS1702167P. DOI

Sun S., Li P., Liang S., Yang Z. Diversified copper sulfide (Cu2−xS) micro-/nanostructures: A comprehensive review on synthesis, modifications and applications. Nanoscale. 2017;9:11357. doi: 10.1039/C7NR03828C. PubMed DOI

Patel T.A., Panda E. Copper deficiency induced varying electronic structure and optoelectronic properties of Cu2−xS thin films. Appl. Surf. Sci. 2019;488:477. doi: 10.1016/j.apsusc.2019.05.235. DOI

Gupta K., Singh M., Mohan P., Mott D., Maenosono S. Synthesis and Characterization of copper sulfide-manganese sulfide nanoparticles with chestnut morphology and study on the semiconducting properties. ChemistrySelect. 2019;4:3898. doi: 10.1002/slct.201803920. DOI

Itoh K., Kuzuya T., Sumiyama K. Morphology and composition-controls of CuxS nancrystals using alkylamine ligands. Mater. Trans. 2006;47:1953. doi: 10.2320/matertrans.47.1953. DOI

Shitu I.G., Talib Z.A., Chi J.L.Y., Kechlick M.M.A., Baqiah H. Influence of tartaric acid concentration on structural and optical properties of CuSe nanoparticles synthesized via microwave assisted method. Results Phys. 2020;17:103041. doi: 10.1016/j.rinp.2020.103041. DOI

Wang X., Miao Z., Ma Y., Chen H., Qian H., Zha Z. One-pot solution synthesis of shape-controlled copper selenide nanostructures and their potential applications in photocatalysis and photothermal therapy. Nanoscale. 2017;9:14512. doi: 10.1039/C7NR04851C. PubMed DOI

Zhou H., Xiong B., Chen L., Shi J. Modulation strategies of Cu-based electrocatalysts for efficient nitrogen reduction. J. Mater. Chem. A. 2020;8:20286. doi: 10.1039/D0TA06776H. DOI

Ma L., Li Y., Xu Y., Sun J., Liu J., Wu T., Ding X., Niu Y. Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: Advance, challenges and perspectives. A mini review. Electrochem. Commun. 2021;125:107002. doi: 10.1016/j.elecom.2021.107002. DOI

Ciglenecki I., Krznaric D., Helz G. Voltammetry of copper sulfide particles and nanoparticles: Investigation of the cluster hypothesis. Environ. Sci. Technol. 2005;39:7492. doi: 10.1021/es050586v. PubMed DOI

Singh S.C., Li H., Yao C., Zhan Z., Yu W., Yu Z., Guo C. Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes. Nano Energy. 2018;51:774. doi: 10.1016/j.nanoen.2018.07.020. PubMed DOI PMC

Khan M.D., Opallo M., Revaprasadu N. Colloidal synthesis of metal chalcogenide nanomaterials from metal-organic precursors and capping ligand effect on electrocatalytic performance: Progress, challenges and future perpsectives. Dalton Trans. 2021;50:11347. doi: 10.1039/D1DT01742J. PubMed DOI

Giuffredi G., Asset T., Liu Y., Atanassov P., Di Fonzo F. Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction. ACS Mater. Au. 2021;1:6. doi: 10.1021/acsmaterialsau.1c00006. PubMed DOI PMC

Antonatos N., Kovalska E., Mazanek V., Vesely M., Sedmidubsky D., Wu B., Sofer Z. Electrochemical exfoliation of Janus-like BiTeI nanosheets for electrocatalytic nitrogen reduction. ACS Appl. Nano Mater. 2021;4:590. doi: 10.1021/acsanm.0c02860. DOI

Connor S., Schuch J., Kaiser B., Jaegermann W. The determination of electrochemical active surface are and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem. 2020;234:979. doi: 10.1515/zpch-2019-1514. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...