Unified Nanotechnology Format: One Way to Store Them All

. 2021 Dec 23 ; 27 (1) : . [epub] 20211223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35011301

Grantová podpora
952110 European Union's Horizon 2020 research and innovation program
1931487 National Science Foundation

The domains of DNA and RNA nanotechnology are steadily gaining in popularity while proving their value with various successful results, including biosensing robots and drug delivery cages. Nowadays, the nanotechnology design pipeline usually relies on computer-based design (CAD) approaches to design and simulate the desired structure before the wet lab assembly. To aid with these tasks, various software tools exist and are often used in conjunction. However, their interoperability is hindered by a lack of a common file format that is fully descriptive of the many design paradigms. Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF) designed specifically for the biomimetic nanotechnology field. UNF allows storage of both design and simulation data in a single file, including free-form and lattice-based DNA structures. By defining a logical and versatile format, we hope it will become a widely accepted and used file format for the nucleic acid nanotechnology community, facilitating the future work of researchers and software developers. Together with the format description and publicly available documentation, we provide a set of converters from existing file formats to simplify the transition. Finally, we present several use cases visualizing example structures stored in UNF, showcasing the various types of data UNF can handle.

Zobrazit více v PubMed

Sun L., Yu L., Shen W. DNA nanotechnology and its applications in biomedical research. J. Biomed. Nanotechnol. 2014;10:2350–2370. doi: 10.1166/jbn.2014.1930. PubMed DOI

Tang M.S.L., Shiu S.C.-C., Godonoga M., Cheung Y.-W., Liang S., Dirkzwager R.M., Kinghorn A.B., Fraser L.A., Heddle J.G., Tanner J.A. An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine. 2018;14:1161–1168. doi: 10.1016/j.nano.2018.01.018. PubMed DOI

Li S., Jiang Q., Liu S., Zhang Y., Tian Y., Song C., Wang J., Zou Y., Anderson G.J., Han J.-Y., et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018;36:258–264. doi: 10.1038/nbt.4071. PubMed DOI

Rothemund P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. doi: 10.1038/nature04586. PubMed DOI

Veneziano R., Ratanalert S., Zhang K., Zhang F., Yan H., Chiu W., Bathe M. Designer nanoscale DNA assemblies programmed from the top down. Science. 2016;352:1534. doi: 10.1126/science.aaf4388. PubMed DOI PMC

Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Högberg B. DNA rendering of polyhedral meshes at the nanoscale. Nature. 2015;523:441–444. doi: 10.1038/nature14586. PubMed DOI

Weizmann Y., Andersen E.S. RNA nanotechnology—The knots and folds of RNA nanoparticle engineering. MRS Bull. 2017;42:930–935. doi: 10.1557/mrs.2017.277. DOI

Hernandez-Garcia A. Strategies to Build Hybrid Protein-DNA Nanostructures. Nanomaterials. 2021;11:1332. doi: 10.3390/nano11051332. PubMed DOI PMC

Douglas S.M., Marblestone A.H., Teerapittayanon S., Vazquez A., Church G.M., Shih W.M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009;37:5001–5006. doi: 10.1093/nar/gkp436. PubMed DOI PMC

De Llano E., Miao H., Ahmadi Y., Wilson A.J., Beeby M., Viola I., Barisic I. Adenita: Interactive 3D modelling and visualization of DNA nanostructures. Nucleic Acids Res. 2020;48:8269–8275. doi: 10.1093/nar/gkaa593. PubMed DOI PMC

Šulc P., Romano F., Ouldridge T.E., Rovigatti L., Doye J.P.K., Louis A.A. Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 2012;137:135101. doi: 10.1063/1.4754132. PubMed DOI

Doye J.P.K., Fowler H., Prešern D., Bohlin J., Rovigatti L., Romano F., Šulc P., Wong C.K., Louis A.A., Schreck J.S., et al. The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami. 2020. [(accessed on 15 November 2021)]. Available online: https://arxiv.org/pdf/2004.05052. PubMed

Suma A., Poppleton E., Matthies M., Šulc P., Romano F., Louis A.A., Doye J.P.K., Micheletti C., Rovigatti L. TacoxDNA: A user-friendly web server for simulations of complex DNA structures, from single strands to origami. J. Comput. Chem. 2019;40:2586–2595. doi: 10.1002/jcc.26029. PubMed DOI

Dalby A., Nourse J.G., Hounshell W.D., Gushurst A.K.I., Grier D.L., Leland B.A., Laufer J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992;32:244–255. doi: 10.1021/ci00007a012. DOI

XYZ (Format)—Open Babel. [(accessed on 15 October 2021)]. Available online: http://openbabel.org/wiki/XYZ_%28format%29.

Atomic Coordinate Entry Format Version 3.3. [(accessed on 15 October 2021)]. Available online: https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html.

Bourne P.E., Berman H.M., McMahon B., Watenpaugh K.D., Westbrook J.D., Fitzgerald P.M. Macromolecular Crystallography Part B. Elsevier; Amsterdam, The Netherlands: 1997. [30] Macromolecular crystallographic information file; pp. 571–590. PubMed

Fitzgerald P.M.D., Berman H., Bourne P., McMahon B., Watenpaugh K., Westbrook J. The mmCIF dictionary: Community review and final approval. Acta Cryst. Sect. A. 1996;52:C575. doi: 10.1107/S0108767396076593. DOI

Jewett A.I., Stelter D., Lambert J., Saladi S.M., Roscioni O.M., Ricci M., Autin L., Maritan M., Bashusqeh S.M., Keyes T., et al. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J. Mol. Biol. 2021;433:166841. doi: 10.1016/j.jmb.2021.166841. PubMed DOI PMC

LAMMPS Molecular Dynamics Simulator. [(accessed on 15 October 2021)]. Available online: https://www.lammps.org/

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Dominguez C., Boelens R., Bonvin A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003;125:1731–1737. doi: 10.1021/ja026939x. PubMed DOI

Roel-Touris J., Don C.G., Honorato R.V., Rodrigues J.P.G.L.M., Bonvin A.M.J.J. Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK. J. Chem. Theory Comput. 2019;15:6358–6367. doi: 10.1021/acs.jctc.9b00310. PubMed DOI PMC

Honorato R.V., Roel-Touris J., Bonvin A.M.J.J. MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing. Front. Mol. Biosci. 2019;6:102. doi: 10.3389/fmolb.2019.00102. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., de Vries A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Gamini R., Chandler D. Residue-Based Coarse Graining Using MARTINI Force Field in NAMD. University of Illinois at Urbana-Champaign, Computational Biophysics Workshop; Urbana, IL, USA: 2013.

Doty D., Lee B.L., Stérin T. scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures. In: Geary C., Matthew P.J., editors. 26th International Conference on DNA Computing and Molecular Programming (DNA 26) Schloss Dagstuhl-Leibniz-Zentrum für Informatik; Dagstuhl, Germany: 2020. pp. 9:1–9:17.

Williams S., Lund K., Lin C., Wonka P., Lindsay S., Yan H. Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures. In: Goel A., Simmel F.C., Sosík P., editors. DNA Computing. Springer; Berlin/Heidelberg, Germany: 2009. pp. 90–101.

Parabon NanoLabs The Parabon™ inSēquio™ Design Studio: The Quintessential Application for Designing DNA-Based Nanostructures. [(accessed on 30 November 2021)]. Available online: https://parabon-nanolabs.com/therapeutics/insequio.html.

Huang C.-M., Kucinic A., Johnson J.A., Su H.-J., Castro C.E. Integrated computer-aided engineering and design for DNA assemblies. Nat. Mater. 2021;20:1264–1271. doi: 10.1038/s41563-021-00978-5. PubMed DOI

University of Oxford Documentation—OxDNA. [(accessed on 15 October 2021)]. Available online: https://dna.physics.ox.ac.uk/index.php/Documentation#Configuration_and_topology_files.

Procyk J., Poppleton E., Šulc P. Coarse-grained nucleic acid-protein model for hybrid nanotechnology. Soft Matter. 2021;17:3586–3593. doi: 10.1039/D0SM01639J. PubMed DOI

Kim D.-N., Kilchherr F., Dietz H., Bathe M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 2012;40:2862–2868. doi: 10.1093/nar/gkr1173. PubMed DOI PMC

Lee J.Y., Lee J.G., Yun G., Lee C., Kim Y.-J., Kim K.S., Kim T.H., Kim D.-N. Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution. ACS Nano. 2021;15:1002–1015. doi: 10.1021/acsnano.0c07717. PubMed DOI

Poppleton E., Bohlin J., Matthies M., Sharma S., Zhang F., Šulc P. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 2020;48:e72. doi: 10.1093/nar/gkaa417. PubMed DOI PMC

Fernandez-Castanon J., Bomboi F., Rovigatti L., Zanatta M., Paciaroni A., Comez L., Porcar L., Jafta C.J., Fadda G.C., Bellini T., et al. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. J. Chem. Phys. 2016;145:84910. doi: 10.1063/1.4961398. PubMed DOI

Snodin B.E.K., Randisi F., Mosayebi M., Šulc P., Schreck J.S., Romano F., Ouldridge T.E., Tsukanov R., Nir E., Louis A.A., et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 2015;142:234901. doi: 10.1063/1.4921957. PubMed DOI

Zhan P., Urban M.J., Both S., Duan X., Kuzyk A., Weiss T., Liu N. DNA-assembled nanoarchitectures with multiple components in regulated and coordinated motion. Sci. Adv. 2019;5:eaax6023. doi: 10.1126/sciadv.aax6023. PubMed DOI PMC

Marras A.E., Zhou L., Kolliopoulos V., Su H.-J., Castro C.E. Directing folding pathways for multi-component DNA origami nanostructures with complex topology. New J. Phys. 2016;18:55005. doi: 10.1088/1367-2630/18/5/055005. DOI

Johnson J.A., Dehankar A., Robbins A., Kabtiyal P., Jergens E., Ho Lee K., Johnston-Halperin E., Poirier M., Castro C.E., Winter J.O. The path towards functional nanoparticle-DNA origami composites. Mater. Sci. Eng. R Rep. 2019;138:153–209. doi: 10.1016/j.mser.2019.06.003. DOI

Ahmadi Y., Nord A.L., Wilson A.J., Hütter C., Schroeder F., Beeby M., Barišić I. The Brownian and Flow-Driven Rotational Dynamics of a Multicomponent DNA Origami-Based Rotor. Small. 2020;16:e2001855. doi: 10.1002/smll.202001855. PubMed DOI

Harris L.J., Skaletsky E., McPherson A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 1998;275:861–872. doi: 10.1006/jmbi.1997.1508. PubMed DOI

Converting caDNAno Design JSON File to All-Atom PDB File|The Aksimentiev Group. [(accessed on 2 November 2021)]. Available online: https://bionano.physics.illinois.edu/sites/default/files/smileyFace.json.

Nagamura R., Fukuda M., Kawamoto A., Matoba K., Dohmae N., Ishitani R., Takagi J., Nureki O. Structural basis for oligomerization of the prokaryotic peptide transporter PepTSo2. Acta Crystallogr. F Struct. Biol. Commun. 2019;75:348–358. doi: 10.1107/S2053230X19003546. PubMed DOI PMC

Mak A.N.-S., Bradley P., Cernadas R.A., Bogdanove A.J., Stoddard B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 2012;335:716–719. doi: 10.1126/science.1216211. PubMed DOI PMC

Xue H., Yao T., Cao M., Zhu G., Li Y., Yuan G., Chen Y., Lei M., Huang J. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature. 2019;573:445–449. doi: 10.1038/s41586-019-1528-1. PubMed DOI

Zuo X., Wang J., Foster T.R., Schwieters C.D., Tiede D.M. Rigid-Body Refinement of the Tetraloop-Receptor RNA Complex. [(accessed on 21 December 2021)]. Available online: https://www.rcsb.org/structure/2JYH.

Grau F.C., Jaeger J., Groher F., Suess B., Muller Y.A. The complex formed between a synthetic RNA aptamer and the transcription repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Nucleic Acids Res. 2020;48:3366–3378. doi: 10.1093/nar/gkaa083. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CATANA: an online modelling environment for proteins and nucleic acid nanostructures

. 2022 Jul 05 ; 50 (W1) : W152-W158.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...