Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35052163
PubMed Central
PMC8774907
DOI
10.3390/e24010138
PII: e24010138
Knihovny.cz E-zdroje
- Klíčová slova
- Kedem–Katchalsky equations, concentration Rayleigh number, concentration polarization, membrane potential, membrane transport, polymeric membrane,
- Publikační typ
- časopisecké články MeSH
Based on Kedem-Katchalsky formalism, the model equation of the membrane potential (Δψs) generated in a membrane system was derived for the conditions of concentration polarization. In this system, a horizontally oriented electro-neutral biomembrane separates solutions of the same electrolytes at different concentrations. The consequence of concentration polarization is the creation, on both sides of the membrane, of concentration boundary layers. The basic equation of this model includes the unknown ratio of solution concentrations (Ci/Ce) at the membrane/concentration boundary layers. We present the calculation procedure (Ci/Ce) based on novel equations derived in the paper containing the transport parameters of the membrane (Lp, σ, and ω), solutions (ρ, ν), concentration boundary layer thicknesses (δl, δh), concentration Raileigh number (RC), concentration polarization factor (ζs), volume flux (Jv), mechanical pressure difference (ΔP), and ratio of known solution concentrations (Ch/Cl). From the resulting equation, Δψs was calculated for various combinations of the solution concentration ratio (Ch/Cl), the Rayleigh concentration number (RC), the concentration polarization coefficient (ζs), and the hydrostatic pressure difference (ΔP). Calculations were performed for a case where an aqueous NaCl solution with a fixed concentration of 1 mol m-3 (Cl) was on one side of the membrane and on the other side an aqueous NaCl solution with a concentration between 1 and 15 mol m-3 (Ch). It is shown that (Δψs) depends on the value of one of the factors (i.e., ΔP, Ch/Cl, RC and ζs) at a fixed value of the other three.
Biotechnology Centre Silesian University of Technology Akademicka 2A 44100 Gliwice Poland
Department of Health Science Jan Dlugosz University 13 15 Armia Krajowa Al 42200 Częstochowa Poland
Zobrazit více v PubMed
Batko K.M., Ślęzak A., Bajdur W.M. The role of gravity in the evolution of the concentration field in the electrochemical membrane cell. Entropy. 2020;22:680. doi: 10.3390/e22060680. PubMed DOI PMC
Lipton B.H., Bhaerman S. Spontaneous Evolution–Our Positive Future and a Way to Get There from Here. Hay House Inc.; Carlsbad, CA, USA: 2018.
Batko K.M., Ślęzak A. Evaluation of the global S-entropy production in membrane transport of aqueous solutions of hydrochloric acid and ammonia. Entropy. 2020;22:1021. doi: 10.3390/e22091021. PubMed DOI PMC
Ślęzak A., Ślęzak I.H., Ślęzak K.M. Influence of the concentration boundary layers on membrane potential in a single-membrane system. Desalination. 2005;184:113–123. doi: 10.1016/j.desal.2005.03.064. DOI
Bruinsma R., Aleksander S. Theory of electrohydrodynamic instabilities in electrolytic cells. J. Chem. Phys. 1990;92:3074–3080. doi: 10.1063/1.457905. DOI
Barry P.H., Diamond J.M. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 1984;64:763–872. doi: 10.1152/physrev.1984.64.3.763. PubMed DOI
Dworecki K., Ślęzak A., Ornal-Wąsik B., Wąsik S. Effect of hydrodynamic instabilities on solute transport in a membrane system. J. Membr. Sci. 2005;265:94–100. doi: 10.1016/j.memsci.2005.04.041. DOI
Dworecki K., Wąsik S., Ślęzak A. Temporal and spatial structure of the concentration boundary layers in membrane system. Physica A. 2003;326:360–369. doi: 10.1016/S0378-4371(03)00266-8. DOI
Dworecki K., Ślęzak A., Ornal-Wąsik B., Wąsik S. Evolution of concentration field in membrane system. J. Biochem. Biophys. Meth. 2005;62:153–162. doi: 10.1016/j.jbbm.2004.10.007. PubMed DOI
Ibanez B., Stamatilis D.F., Wessling M. Role of membrane surface in concentration polarization at cation exchange membranes. J. Membr. Sci. 2004;239:119–128. doi: 10.1016/j.memsci.2003.12.032. DOI
Kumar P., Rubinstein S.M., Rubinstein I., Zaltzman B. Mechanisms of hydrodynamic instability in concentration polarization. Phys. Rev. Res. 2020;2:033365. doi: 10.1103/PhysRevResearch.2.033365. DOI
Manzanares J.A., Murphy W.D., Mafe S., Reiss H. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 1993;97:8524–8530. doi: 10.1021/j100134a023. DOI
Rubinstein I., Zaltaman B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E. 2000;62:2238–2251. doi: 10.1103/PhysRevE.62.2238. PubMed DOI
Nikonenko V., Nebavsky A., Mareev S., Kovalenko A., Urtenov M., Pourcelly G. Modelling of ion transport in electromembrane systems: Impact of membrane bulk and surface heterogeneity. Appl. Sci. 2019;9:25. doi: 10.3390/app9010025. DOI
Ślęzak A., Dworecki K., Jasik-Ślęzak J., Wąsik J. Method to determine the practical concentration Rayleigh number in isothermal passive membrane transport processes. Desalination. 2004;168:397–412. doi: 10.1016/j.desal.2004.07.027. DOI
Ślęzak A. A model equation for the gravielectric effect in electrochemical cells. Biophys. Chem. 1990;38:189–199. doi: 10.1016/0301-4622(90)87001-2. PubMed DOI
Ślęzak A. Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane. Biophys. Chem. 1989;34:91–102. doi: 10.1016/0301-4622(89)80047-X. PubMed DOI
Rewak-Soroczynska J., Sobierajska P., Targonska S., Piecuch A., Grosman L., Rachuna J., Wasik S., Arabski M., Ogorek R., Wiglusz R.J. New approach to antifungal activity of fluconazole incorporated into the porous 6-Anhydro-α-L-Galacto-β-D-Galactan structures modified with nanohydroxyapatite for chronic-wound treatments—in vitro evaluation. Int. J. Mol. Sci. 2021;22:3112. doi: 10.3390/ijms22063112. PubMed DOI PMC
Kargol M. The graviosmotic hypothesis of xylem transport in plants. Gen. Physiol. Biophys. 1992;11:429–487. PubMed
Moya A.A. Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A N ernst-Planck based study. J. Membr. Sci. 2020;598:117784. doi: 10.1016/j.memsci.2019.117784. DOI
Zabolotsky V.I., Achoh A.R., Lebedev K.A., Melnikov S.S. Permselectivity of bilayered ion-exchange membranes in ternary electrolyte. J. Membr. Sci. 2020;608:18152. doi: 10.1016/j.memsci.2020.118152. DOI
Katchalsky A., Curran P.F. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press; Cambridge, MA, USA: 1965.
Kedem O., Katchalsky A. Permeability of composite membranes. Part 1. Electric current, volume flow and solute flow through membranes. Trans. Faraday Soc. 1963;59:1918–1930. doi: 10.1039/TF9635901918. DOI
Grzegorczyn S., Ślęzak A. Kinetics of concentration boundary layers buildup in the system consisted of microbial cellulose biomembrane and electrolyte solutions. J. Membr. Sci. 2007;304:148–155. doi: 10.1016/j.memsci.2007.07.027. DOI
Grzegorczyn S., Ślęzak A., Michalska-Małecka K., Ślęzak-Prochazka I. Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient. J. Non.-Equilib. Thermodyn. 2012;37:77–98. doi: 10.1515/jnetdy.2011.027. DOI
Grzegorczyn S., Ślęzak A., Przywara-Chowaniec B. Concentration polarization phenomenon in the case of mechanical pressure difference on the membrane. J. Biol. Phys. 2017;43:225–238. doi: 10.1007/s10867-017-9448-5. PubMed DOI PMC
Klinkman H., Holtz M., Wilgerodt W., Wilke G., Schoenfelder D. Nephrophan–Eine neue dialysemembranen. Z. Urol. Nephrol. 1969;62:285–292. PubMed
Kargol A. Modified Kedem-Katchalsky equations and their applications. J. Membr. Sci. 2000;174:43–53. doi: 10.1016/S0376-7388(00)00367-7. DOI
Grzegorczyn S., Jasik-Ślęzak J., Michalska-Małecka K., Ślęzak A. Transport of non-electrolyte solutions through membrane with concentration polarization. Gen. Physiol. Biophys. 2008;27:315–321. PubMed
Lebon G., Jou D., Casas-Vasquez J. Understanding Non-Equilibrium Thermodynamics. Foundations, Applications, Frontiers. Springer; Berlin, Germany: 2008.
Lohaus T., Herkenhoff N., Shankar R., Wessling M. Feed flow patterns of combined Rayleigh-Bénard convection and membrane permeation. J. Membr. Sci. 2018;549:60–66. doi: 10.1016/j.memsci.2017.11.061. DOI
Mbituyimana B., Liu L., Ye W., Ode Boni B.O., Zhang K., Chen J., Thomas S., Vasilievich R.V., Shi Z., Yang G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym. 2021;273:118565. doi: 10.1016/j.carbpol.2021.118565. PubMed DOI