Biochar reduces the toxicity of silver to barley (Hordeum vulgare) and springtails (Folsomia candida) in a natural soil

. 2022 May ; 29 (25) : 37435-37444. [epub] 20220123

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35066846

Grantová podpora
CZ.02.2.69/0.0/0.0/17_050/0008485 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 35066846
DOI 10.1007/s11356-021-18289-2
PII: 10.1007/s11356-021-18289-2
Knihovny.cz E-zdroje

The use of biochar in soil remediation is a promising method to deal with metal contamination. In the present study, the influence of biochar amendment on the toxicity of silver (as AgNO3) to terrestrial organisms was assessed. For this, toxicity tests were conducted with terrestrial plant barley (Hordeum vulgare) and invertebrate springtails (Folsomia candida) in the standard natural Lufa soil amended or not with a wood-derived biochar at 5% (w/w). Biochar addition increased root length and mass in barley, compared to unamended soil. However, the effects of Ag on barley growth were masked by a great variation among replicates in biochar-amended soil. Photosynthetic pigment contents (total chlorophyll and carotenoids) were lower in plants exposed to Ag in Lufa soil, but not in biochar-amended soil. Moreover, Ag drastically decreased dehydrogenase activity in Lufa soil. For springtails, the addition of biochar clearly decreased the toxicity of Ag. The LC50 was 320 mg Ag/kg in Lufa soil, while no mortality was observed up to 500 mg Ag/kg in biochar-amended soil. The EC50 for effects on reproduction was significantly higher in biochar-amended soil compared to unamended Lufa soil (315 and 215 mg Ag/kg, respectively). The wood-derived biochar used in this study has shown a potential for remediation of contaminated soils, as a decrease in Ag toxicity was observed in most endpoints analysed in barley and springtails.

Zobrazit více v PubMed

Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO DOI

Ardestani MM, van Gestel CAM (2013) Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida. Ecotoxicology 22:308–318 DOI

Bogusz A, Nowak K, Stefaniuk M, Dobrowolski R, Oleszczuk P (2017) Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. J Environ Manage 201:268–276 DOI

Chaperon S, Sauvé S (2008) Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotox Environ Safe 70:1–9 DOI

Conti FD, Visioli G, Malcevschi A, Menta C (2018) Safety assessment of gasification biochars using Folsomia candida (Collembola) ecotoxicological bioassays. Environ Sci Pollut Res 25:6668–6679 DOI

Coskun D, Britto DT, Jean YK, Schulze LM, Becker A, Kronzucker HJ (2012) Silver ions disrupt K DOI

Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environ Pollut 253:578–598 DOI

Dhaliwal SS, Singh J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27:1319–1333 DOI

Fayez KA, El-Deeb BA, Mostafa NY (2017) Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol Plant 39:1–13 DOI

Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “standard” soil arthropod. Annu Rev Entomol 50:201–222 DOI

van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406:385–395 DOI

Gomes SIL, Scott-Fordsmand JJ, Amorim MJB (2015) Cellular energy allocation to assess the impact of nanomaterials on soil invertebrates (Enchytraeids): the effect of Cu and Ag. Int J Environ Res Public Health 12:6858–6878 DOI

González Linares M, Jia Y, Sunahara GI, Whalen JK (2020) Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils. Can J Soil Sci 100:189–197 DOI

Hopkins D, Hawboldt K (2020) Biochar for the removal of metals from solution: a review of lignocellulosic and novel marine feedstocks. J Environ Chem Eng 8:103975 DOI

Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1:366–381 DOI

ISO (1995) Soil Quality: Determination of the Effect of Pollutants on Soil Flora, Part 2: Effects of Chemicals on the Emergence and Growth of Higher Plants. Switzerland, Geneva

ISO (2002) Soil quality: Determination of dehydrogenase activity in soils, part 1: method using triphenyltetrazolium chloride (TTC). International Organization for Standardization, Geneve, Switzerland

ISO (2005) Soil Quality: Determination of pH. ISO 10390. International Organization for Standardization, Geneve

Kończak M, Oleszczuk P, Różyło K (2019) Application of different carrying gases and ratio between sewage sludge and willow for engineered (smart) biochar production. J CO

Kończak M, Oleszczuk P (2020) Co-pyrolysis of sewage sludge and biomass in carbon dioxide as a carrier gas affects the total and leachable metals in biochars. J Hazard Mater 400:123144 DOI

Kończak M, Pan B, Ok YS, Oleszczuk P (2020) Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Sci Total Environ 723:137796 DOI

Langdon KA, McLaughlin MJ, Kirby JK, Merrington G (2015) Influence of soil properties and soil leaching on the toxicity of ionic silver to plants. Environ Toxicol and Chem 34:2503–2512 DOI

Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Gl Change 11:403–427 DOI

Liang L, Xi F, Tan W, Meng X, Hu B, Wang X (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281 DOI

Lock K, Van Eeckhout H, De Schamphelaere KAC, Criel P, Janssen CR (2007) Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere 66:1346–1352 DOI

Maria VL, Ribeiro MJ, Guilherme S, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB (2018) Silver (nano) materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. Environ Toxicol Chem 37:184–191 DOI

Mendes LA, Maria VL, Scott-Fordsmand JJ, Amorim MJB (2015) Ag nanoparticles (Ag NM300K) in the terrestrial environment: Effects at population and cellular level in Folsomia candida (Collembola). Int J Environ Res Public Health 12:12530–12542 DOI

Mo F, Li H, Li Y, Cui W, Wang M, Li Z, Chai R, Wang H (2020) Toxicity of Ag+ on microstructure, biochemical activities and genic material of Trifolium pratense L. seedlings with special reference to phytoremediation. Ecotox Environ Safe 195:110499 DOI

Novo M, Lahive E, Díez-Ortiz M, Matzke M, Morgan AJ, Spurgeon DJ, Svendsen C, Kille P (2015) Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environ Pollut 205:385–393 DOI

Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: Implications for policy makers. Environ Sci Technol 45:1177–1183 DOI

Nyoka NWK, Kanyile SN, Bredenhand E, Prinsloo GJ, Otomo PV (2018) Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta). Environ Sci Pollut Res 25:10937–10945 DOI

O’Connor D, Peng T, Zhang J, Tsang DCW, Alessi DS, Shen Z, Bolan NS, Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619:815–826 DOI

OECD (2009) Guidelines for the Testing of Chemicals, No 232, Collembolan Reproduction Test in Soil. Organization for Economic Cooperation and Development, Paris

Paz-Ferreiro J, Nieto A, Méndez A, Askeland MPJ, Gascó G (2018) Biochar from Biosolids Pyrolysis: A Review. Int J Environ Res Public Health 15(5):956 DOI

Pohořelý M, Picek I, Skoblia S (2015) Apparatus for Multistage Gasification of Carbonaceous Fules. Pat. No. 306239/PV: 483. Applied: 15.07.09, Patented: 16.09.07

Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65(1):173–185 DOI

Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: A review. Environ Toxicol Chem 18:89–108 DOI

Rodrigues NP, Scott-Fordsmand JJ, Amorim MJB (2020) Novel understanding of toxicity in a life cycle perspective–The mechanisms that lead to population effect–The case of Ag (nano) materials. Environ Pollut 262:114277 DOI

Roelofs D, Makama S, De Boer TE, Vooijs R, Van Gestel CAM, Van Den Brink NW (2020) Surface coating and particle size are main factors explaining the transcriptome-wide responses of the earthworm Lumbricus rubellus to silver nanoparticles. Environ Sci: Nano 7:1179–1193

Salachna P, Byczyńska A, Zawadzińska A, Piechocki R, Mizielińska M (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9:610 DOI

Saleeb N, Robinson B, Cavanagh J, Ross J, Munir K, Gooneratne R (2020) Antioxidant enzyme activity and lipid peroxidation in Aporrectodea caliginosa earthworms exposed to silver nanoparticles and silver nitrate in spiked soil. Environ Toxicol Chem 39:1257–1266 DOI

Shin YJ, Kwak JIl, An YJ, (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529 DOI

Shirvanimoghaddam K, Czech B, Tyszczuk-Rotko K, Kończak M, Fakhrhoseini SM, Yadav R, Naebe M (2021) Sustainable synthesis of rose flower-like magnetic biochar from tea waste for environmental applications. J Adv Res In Press

Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444 DOI

Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research –WH Freeman and Co. New York, XIX

Stefaniuk M, Oleszczuk P, Bartmiński P (2016) Chemical and ecotoxicological evaluation of biochar produced from residues of biogas production. J Hazard Mater 318:417–424 DOI

Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76 DOI

Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659 DOI

Tourinho PS, Loureiro S, Talluri VP, Dolar A, Verweij R, Chvojka J, Michalcová A, Kočí V, van Gestel CAM (2021) Microplastic fibers influence Ag toxicity and bioaccumulation in Eisenia andrei but not in Enchytraeus crypticus. Ecotoxicology 30:1216–1226 DOI

Velicogna JR, Ritchie EE, Scroggins RP, Princz JI (2016) A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology 10:1144–1151 DOI

Waalewijn-Kool PL, Klein K, Forniés RM, van Gestel CAM (2014) Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida. Ecotoxicology 23:1629–1637 DOI

Wan S, Li Y, Cheng S, Wu G, Yang X, Wang Y, Gao L (2022) Cadmium removal by FeOOH nanoparticles accommodated in biochar: Effect of the negatively charged functional groups in host. J Hazard Mater 421:126807 DOI

Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261 DOI

Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313 DOI

Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729 DOI

Zhan F, Zeng W, Yuan X, Li B, Li T, Zu Y, Jiang M, Li Y (2019) Field experiment on the effects of sepiolite and biochar on the remediation of Cd-and Pb-polluted farmlands around a Pb–Zn mine in Yunnan Province, China. Environ Sci Pollut Res 26:7743–7751 DOI

Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483 DOI

Zhao M, Dai Y, Zhang M, Feng C, Qin B, Zhang W, Zhao N, Li Y, Ni Z, Xu Z, Tsang DCW, Qiu R (2020) Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci Total Environ 717:136894 DOI

Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan. China Environ Sci Pollut Res 22:11097–11108 DOI

Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...