Investigating the impact of weak geomagnetic fluctuations on pigeon races
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35088124
PubMed Central
PMC8918452
DOI
10.1007/s00359-021-01534-x
PII: 10.1007/s00359-021-01534-x
Knihovny.cz E-zdroje
- Klíčová slova
- Geomagnetic fluctuations, Homing, Magnetoreception, Magnetoreceptor, Pigeons,
- MeSH
- Columbidae * fyziologie MeSH
- let zvířat fyziologie MeSH
- orientace fyziologie MeSH
- podněty MeSH
- teritoriální chování * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The existence of avian magnetic orientation has been proved by many experimental studies, however, evidence for the use of magnetic cues by homing pigeons remains controversial. To investigate magnetic orientation by homing pigeons, we analyzed the results of pigeon races relative to weak fluctuations in the geomagnetic field, assuming that such disturbances could impact navigational efficiency if based on magnetoreception. Whereas most of the previous studies recorded and analyzed vanishing bearing of individually released pigeons, we evaluated relative duration of the homeward flight (homing speed, as a proxy of navigational efficiency) and its dependence on specific geomagnetic indices in racing pigeons released collectively. Our analysis of orientation efficiency of about 289 pigeon races over 15 years suggested slight negative correlations between geomagnetic fluctuations and homing time. Although the interpretation of this finding is manifold and not clear, it suggests that natural magnetic variations or disturbances can affect the homing orientation performance of pigeons. We suggest that studying pigeon races may have a heuristic potential and since these races are regularly and frequently organized in many countries all over the globe, examining homing performance relative to a suite of environmental variables may be useful for exploring hypotheses about pigeon navigation.
Company Evžena Rošického 1062 3 721 00 Ostrava Svinov Czech Republic
Institute of Geonics of the Czech Academy of Sciences Studentská 1768 708 33 Ostrava Czech Republic
Zobrazit více v PubMed
Cadiou H, McNaughton PA. Avian magnetite-based magnetoreception: a physiologist’s perspective. J R Soc Interface. 2010;7:193–205. doi: 10.1098/rsif.2009.0423. PubMed DOI PMC
Dornfeldt K. Pigeon homing in the meteorological and solar–geomagnetic environment: what pigeon race data say. Ethology. 1996;102:413–435. doi: 10.1111/j.1439-0310.1996.tb01136.x. DOI
Emlen ST, Emlen JT. A technique for recording migratory orientation of captive birds. Auk. 1966;84:361–367. doi: 10.2307/4083048. DOI
Engels S, Schneider N-L, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature. 2014;509:353–356. doi: 10.1038/Nature13290. PubMed DOI
Fleissner G, Holtkamp-Rotzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol. 2003;458:350–360. doi: 10.1002/cne.10579. PubMed DOI
Hanzlik M, Heunemann C, Holtkamp-Rotzler E, Winklhofer M, Petersen N, Fleissner G. Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals. 2000;13:325–331. doi: 10.1023/A:1009214526685. PubMed DOI
Jandacka P, Burda H, Pistora J. Magnetically induced behaviour of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes? J R Soc Interface. 2015;12:20141087. doi: 10.1098/rsif.2014.1087. PubMed DOI PMC
Keeton WT. Magnets interfere with pigeon homing. Proc Natl Acad Sci USA. 1971;68:102–106. doi: 10.1073/pnas.68.1.102. PubMed DOI PMC
Keeton WT, Larkin TS, Windsor DM. Normal fluctuations in the earth’s magnetic field influence pigeon orientation. J Comp Physiol A. 1974;95:95–103. doi: 10.1007/BF00610108. DOI
Kowalski U, Wiltschko R, Fuller E. Normal fluctuations of the geomagnetic field may affect initial orientation in pigeons. J Comp Physiol A. 1988;163:593–600. doi: 10.1007/BF00603843. DOI
Larkin TS, Keeton WT. Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation. J Comp Physiol A. 1976;110:227–231. doi: 10.1007/BF00659141. DOI
Lauwers M, Pichler P, Edelman NB, Resch GP, Ushakova L, Salzer MC, Heyers D, Saunders M, Shaw J, Keays DA. An iron-rich organelle in the cuticular plate of avian hair cells. Curr Biol. 2013;23:924–929. doi: 10.1016/j.cub.2013.04.025. PubMed DOI
Li Z, Courchamp F, Blumstein DT. Pigeons home faster through polluted air. Sci Rep. 2016;6:18989. doi: 10.1038/srep18989. PubMed DOI PMC
Malkemper EP, Kagerbauer D, Ushakova L, Nimpf S, Pichler P, Treiber CD, de Jonge M, Shaw J, Keays DA. No evidence for a magnetite-based magnetoreceptor in the lagena of pigeons. Curr Biol. 2019;29:14–15. doi: 10.1016/j.cub.2018.11.032. PubMed DOI
Mora CV, Walker MM. Consistent effect of an attached magnet on the initial orientation of homing pigeons, Columba livia. Animal Behav. 2012;84:377–383. doi: 10.1016/j.anbehav.2012.05.005. DOI
Nimpf S, Nordmann GC, Kagerbauer D, Malkemper EP, Landler L, Papadaki-Anastasopoulou A, Ushakova L, Wenninger-Weinzierl A, Novatchkova M, Vincent P, Lendl T, Colombini M, Mason MJ, Keays DA. A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr Biol. 2019;29:1–8. doi: 10.1016/j.cub.2019.09.048. PubMed DOI
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J. 2000;78:707–718. doi: 10.1016/S0006-3495(00)76629-X. PubMed DOI PMC
Schiffner I, Wiltschko R. Temporal fluctuations of the geomagnetic field affect pigeons’ entire homing flight. J Comp Physiol A. 2011;197:765–772. doi: 10.1007/s00359-011-0640-y. PubMed DOI
Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B. Magnetic particle-mediated magnetoreception. J R Soc Interface. 2015;12:20150499. doi: 10.1098/rsif.2015.0499. PubMed DOI PMC
Treiber CD, Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature. 2012;484:367–370. doi: 10.1038/nature11046. PubMed DOI
Treiber CD, Salzer M, Breuss M, Ushakova L, Lauwers M, Edelman N, Keays DA. High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun Integr Bio. 2013;6:e24859. doi: 10.4161/cib.24859. PubMed DOI PMC
Walcott C. Magnetic maps in pigeons. In: Berthold P, editor. Orientation in Birds. Basel: Birkhauser Verlag; 1991. pp. 38–51. PubMed
Walcott C. Pigeon homing: observations, experiments and confusions. J Exp Biol. 1996;199:21–27. doi: 10.1242/jeb.199.1.21. PubMed DOI
Wiltschko R, Wiltschko W. Avian navigation: from historical to modern concepts. Anim Behav. 2003;65:257–272. doi: 10.1006/anbe.2003.2054. DOI
Wiltschko W, Wiltschko R. Homing pigeons as a model for avian navigation? J Avian Biol. 2017;48:66–74. doi: 10.1111/jav.01270. DOI
Wiltschko R, Wiltschko W. Magnetoreception in birds. J R Soc Interface. 2019;16:20190295. doi: 10.1098/rsif.2019.0295. PubMed DOI PMC
Wiltschko R, Stapput K, Ritz T, Thalau P, Wiltschko W. Magnetoreception in birds: different physical processes for two types of directional responses. Hfsp. 2007;10(2976/1):2714294. PubMed PMC
Wiltschko R, Thalau P, Gehring D, Nießner C, Ritz T, Wiltschko W. Magnetoreception in birds: the effect of radio-frequency fields. J R Soc Interface. 2015;12:20141103. doi: 10.1098/rsif.2014.1103. PubMed DOI PMC
Winklhofer M. Magnetoreception. J R Soc Interface. 2010;7:S131–S134. doi: 10.1098/rsif.2010.0010.focus. PubMed DOI PMC
Winklhofer M, Dylda E, Thalau P, Wiltschko W, Wiltschko R. Avian magnetic compass can be tuned to anomalously low magnetic intensities. Proc R Soc B. 2013;280:20130853. doi: 10.1098/rspb.2013.0853. PubMed DOI PMC
Wu LQ, Dickman JD. Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol. 2011;21:418–423. doi: 10.1016/j.cub.2011.01.058. PubMed DOI PMC