• This record comes from PubMed

Precision Glycoproteomics Reveals Distinctive N-Glycosylation in Human Spermatozoa

. 2022 Apr ; 21 (4) : 100214. [epub] 20220218

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 35183770
PubMed Central PMC8958358
DOI 10.1016/j.mcpro.2022.100214
PII: S1535-9476(22)00022-6
Knihovny.cz E-resources

Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.

See more in PubMed

Sprovieri P., Martino G. The role of the carbohydrates in plasmatic membrane. Physiol. Res. 2018;67:1–11. PubMed

Moremen K.W., Tiemeyer M., Nairn A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012;13:448–462. PubMed PMC

Zielinska D.F., Gnad F., Wisniewski J.R., Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897–907. PubMed

Sun S., Zhang H. Identification and validation of atypical N-glycosylation sites. Anal. Chem. 2015;87:11948–11951. PubMed PMC

Shu Q., Li M., Shu L., An Z., Wang J., Lv H., Yang M., Cai T., Hu T., Fu Y., Yang F. Large-scale identification of N-linked intact glycopeptides in human serum using HILIC enrichment and spectral library search. Mol. Cell. Proteomics. 2020;19:672–689. PubMed PMC

Cervoni G.E., Cheng J.J., Stackhouse K.A., Heimburg-Molinaro J., Cummings R.D. O-glycan recognition and function in mice and human cancers. Biochem. J. 2020;477:1541–1564. PubMed

Wang M., Zhu J., Lubman D.M., Gao C. Aberrant glycosylation and cancer biomarker discovery: A promising and thorny journey. Clin. Chem. Lab. Med. 2019;57:407–416. PubMed PMC

Xiao H., Suttapitugsakul S., Sun F., Wu R. Mass spectrometry-based chemical and enzymatic methods for global analysis of protein glycosylation. Acc. Chem. Res. 2018;51:1796–1806. PubMed PMC

Jensen P.F., Comamala G., Trelle M.B., Madsen J.B., Jorgensen T.J., Rand K.D. Removal of N-linked glycosylations at acidic pH by PNGase A facilitates hydrogen/deuterium exchange mass spectrometry analysis of N-linked glycoproteins. Anal. Chem. 2016;88:12479–12488. PubMed

Szigeti M., Bondar J., Gjerde D., Keresztessy Z., Szekrenyes A., Guttman A. Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016;1032:139–143. PubMed

Yamamoto S., Ueda M., Kasai M., Ueda Y., Kinoshita M., Suzuki S. A fast and convenient solid phase preparation method for releasing N-glycans from glycoproteins using trypsin- and peptide-N-glycosidase F (PNGase F)-impregnated polyacrylamide gels fabricated in a pipette tip. J. Pharm. Biomed. Anal. 2020;179:112995. PubMed

Wang S., Qin H., Mao J., Fang Z., Chen Y., Zhang X., Hu L., Ye M. Profiling of endogenously intact N-linked and O-linked glycopeptides from human serum using an integrated platform. J. Proteome Res. 2020;19:1423–1434. PubMed

Liu M.Q., Zeng W.F., Fang P., Cao W.Q., Liu C., Yan G.Q., Zhang Y., Peng C., Wu J.Q., Zhang X.J., Tu H.J., Chi H., Sun R.X., Cao Y., Dong M.Q., et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun. 2017;8:438. PubMed PMC

Polasky D.A., Yu F., Teo G.C., Nesvizhskii A.I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat. Methods. 2020;17:1125–1132. PubMed PMC

Bern M., Kil Y.J., Becker C. Byonic: Advanced peptide and protein identification software. Curr. Protoc. Bioinformatics. 2012 Chapter 13:Unit13.20. PubMed PMC

Shen J., Jia L., Dang L., Su Y., Zhang J., Xu Y., Zhu B., Chen Z., Wu J., Lan R., Hao Z., Ma C., Zhao T., Gao N., Bai J., et al. StrucGP: De novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat. Methods. 2021;18:921–929. PubMed

Aitken R.J., Henkel R.R. Sperm cell biology: Current perspectives and future prospects. Asian J. Androl. 2011;13:3–5. PubMed PMC

Cheon Y.P., Kim C.H. Impact of glycosylation on the unimpaired functions of the sperm. Clin. Exp. Reprod. Med. 2015;42:77–85. PubMed PMC

Tecle E., Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev. 2015;82:635–650. PubMed PMC

Ma F., Wu D., Deng L., Secrest P., Zhao J., Varki N., Lindheim S., Gagneux P. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J. Biol. Chem. 2012;287:38073–38079. PubMed PMC

Liu M. Capacitation-associated glycocomponents of mammalian sperm. Reprod. Sci. 2016;23:572–594. PubMed

Redgrove K.A., Nixon B., Baker M.A., Hetherington L., Baker G., Liu D.Y., Aitken R.J. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm-egg recognition. PLoS One. 2012;7 PubMed PMC

Uchida H., Maruyama T., Nishikawa-Uchida S., Miyazaki K., Masuda H., Yoshimura Y. Glycodelin in reproduction. Reprod. Med. Biol. 2013;12:79–84. PubMed PMC

Lan R., Xin M., Hao Z., You S., Xu Y., Wu J., Dang L., Zhang X., Sun S. Biological functions and large-scale profiling of protein glycosylation in human semen. J. Proteome Res. 2020;19:3877–3889. PubMed

Wang G., Wu Y., Zhou T., Guo Y., Zheng B., Wang J., Bi Y., Liu F., Zhou Z., Guo X., Sha J. Mapping of the N-linked glycoproteome of human spermatozoa. J. Proteome Res. 2013;12:5750–5759. PubMed

Pang P.C., Tissot B., Drobnis E.Z., Sutovsky P., Morris H.R., Clark G.F., Dell A. Expression of bisecting type and Lewisx/Lewisy terminated N-glycans on human sperm. J. Biol. Chem. 2007;282:36593–36602. PubMed

Lu J.C., Huang Y.F., Lü N.Q. WHO laboratory manual for the examination and processing of human semen: Its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue. 2010;16:867–871. PubMed

Deutsch E.W., Mendoza L., Shteynberg D., Slagel J., Sun Z., Moritz R.L. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin. Appl. 2015;9:745–754. PubMed PMC

Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. PubMed

Otasek D., Morris J.H., Boucas J., Pico A.R., Demchak B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019;20:185. PubMed PMC

Sun S., Hu Y., Ao M., Shah P., Chen J., Yang W., Jia X., Tian Y., Thomas S., Zhang H. N-GlycositeAtlas: A database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin. Proteomics. 2019;16:35. PubMed PMC

Janiszewska E., Kratz E.M. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol. Reprod. Dev. 2020;87:515–524. PubMed

Zhao T., Jia L., Li J., Ma C., Wu J., Shen J., Dang L., Zhu B., Li P., Zhi Y., Lan R., Xu Y., Hao Z., Chai Y., Li Q., et al. Heterogeneities of site-specific N-glycosylation in HCC tumors with low and high AFP concentrations. Front. Oncol. 2020;10:496. PubMed PMC

Sun S., Hu Y., Jia L., Eshghi S.T., Liu Y., Shah P., Zhang H. Site-specific profiling of serum glycoproteins using N-linked glycan and glycosite analysis revealing atypical N-glycosylation sites on albumin and α-1B-glycoprotein. Anal. Chem. 2018;90:6292–6299. PubMed PMC

Saraswat M., Joenvaara S., Tomar A.K., Singh S., Yadav S., Renkonen R. N-glycoproteomics of human seminal plasma glycoproteins. J. Proteome Res. 2016;15:991–1001. PubMed

Pang P.C., Tissot B., Drobnis E.Z., Morris H.R., Dell A., Clark G.F. Analysis of the human seminal plasma glycome reveals the presence of immunomodulatory carbohydrate functional groups. J. Proteome Res. 2009;8:4906–4915. PubMed

Link-Lenczowski P., Bubka M., Balog C.I.A., Koeleman C.A.M., Butters T.D., Wuhrer M., Litynska A. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans. Glycoconj. J. 2018;35:217–231. PubMed PMC

Lu J., Isaji T., Im S., Fukuda T., Kameyama A., Gu J. Expression of N-acetylglucosaminyltransferase III suppresses alpha2,3-sialylation, and its distinctive functions in cell migration are attributed to alpha2,6-sialylation Levels. J. Biol. Chem. 2016;291:5708–5720. PubMed PMC

Nowicka-Bauer K., Kurpisz M. Current knowledge of the human sperm proteome. Expert Rev. Proteomics. 2013;10:591–605. PubMed

Bell A.D., Mello C.J., Nemesh J., Brumbaugh S.A., Wysoker A., McCarroll S.A. Insights into variation in meiosis from 31,228 human sperm genomes. Nature. 2020;583:259–264. PubMed PMC

Jodar M., Soler-Ventura A., Oliva R., Molecular Biology of Reproduction and Development Research Group Semen proteomics and male infertility. J. Proteomics. 2017;162:125–134. PubMed

Varki A., Gagneux P. Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 2012;1253:16–36. PubMed PMC

Ma X., Pan Q., Feng Y., Choudhury B.P., Ma Q., Gagneux P., Ma F. Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biol. Reprod. 2016;94:123. PubMed PMC

Kizuka Y., Taniguchi N. Enzymes for N-glycan branching and their genetic and nongenetic regulation in cancer. Biomolecules. 2016;6:25. PubMed PMC

Nakano M., Mishra S.K., Tokoro Y., Sato K., Nakajima K., Yamaguchi Y., Taniguchi N., Kizuka Y. Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan. Mol. Cell. Proteomics. 2019;18:2044–2057. PubMed PMC

Mucha E., Lettow M., Marianski M., Thomas D.A., Struwe W.B., Harvey D.J., Meijer G., Seeberger P.H., Helden G., Pagel K. Fucose migration in intact protonated glycan ions: A universal phenomenon in mass spectrometry. Angew. Chem. Int. Ed. Engl. 2018;57:7440–7443. PubMed

Young S.A., Aitken J., Baker M.A. Phosphorylation of izumo1 and its role in male infertility. Asian J. Androl. 2015;17:708–710. PubMed PMC

Dutta S., Aoki K., Doungkamchan K., Tiemeyer M., Bovin N., Miller D.J. Sulfated Lewis A trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J. Biol. Chem. 2019;294:13445–13463. PubMed PMC

Vizcaino J.A., Cote R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., Griss J., Alpi E., Birim M., Contell J., O'Kelly G., Schoenegger A., Ovelleiro D., Perez-Riverol Y., Reisinger F., et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Res. 2013;41:D1063–D1069. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...