Precision Glycoproteomics Reveals Distinctive N-Glycosylation in Human Spermatozoa
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35183770
PubMed Central
PMC8958358
DOI
10.1016/j.mcpro.2022.100214
PII: S1535-9476(22)00022-6
Knihovny.cz E-resources
- Keywords
- glycan structures, glycoproteomics, intact glycopeptides, mass spectrometry, spermatozoa,
- MeSH
- Acrosome metabolism MeSH
- Acrosome Reaction * MeSH
- Glycoproteins metabolism MeSH
- Glycosylation MeSH
- Sperm Capacitation MeSH
- Humans MeSH
- Proteomics MeSH
- Spermatozoa * metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycoproteins MeSH
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.
College of Life Science Northwest University Xi'an Shaanxi Province China
School of Computer Science and Technology Xidian University Xi'an China
The Assisted Reproduction Center Northwest Women and Children's Hospital Xi'an China
See more in PubMed
Sprovieri P., Martino G. The role of the carbohydrates in plasmatic membrane. Physiol. Res. 2018;67:1–11. PubMed
Moremen K.W., Tiemeyer M., Nairn A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012;13:448–462. PubMed PMC
Zielinska D.F., Gnad F., Wisniewski J.R., Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897–907. PubMed
Sun S., Zhang H. Identification and validation of atypical N-glycosylation sites. Anal. Chem. 2015;87:11948–11951. PubMed PMC
Shu Q., Li M., Shu L., An Z., Wang J., Lv H., Yang M., Cai T., Hu T., Fu Y., Yang F. Large-scale identification of N-linked intact glycopeptides in human serum using HILIC enrichment and spectral library search. Mol. Cell. Proteomics. 2020;19:672–689. PubMed PMC
Cervoni G.E., Cheng J.J., Stackhouse K.A., Heimburg-Molinaro J., Cummings R.D. O-glycan recognition and function in mice and human cancers. Biochem. J. 2020;477:1541–1564. PubMed
Wang M., Zhu J., Lubman D.M., Gao C. Aberrant glycosylation and cancer biomarker discovery: A promising and thorny journey. Clin. Chem. Lab. Med. 2019;57:407–416. PubMed PMC
Xiao H., Suttapitugsakul S., Sun F., Wu R. Mass spectrometry-based chemical and enzymatic methods for global analysis of protein glycosylation. Acc. Chem. Res. 2018;51:1796–1806. PubMed PMC
Jensen P.F., Comamala G., Trelle M.B., Madsen J.B., Jorgensen T.J., Rand K.D. Removal of N-linked glycosylations at acidic pH by PNGase A facilitates hydrogen/deuterium exchange mass spectrometry analysis of N-linked glycoproteins. Anal. Chem. 2016;88:12479–12488. PubMed
Szigeti M., Bondar J., Gjerde D., Keresztessy Z., Szekrenyes A., Guttman A. Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016;1032:139–143. PubMed
Yamamoto S., Ueda M., Kasai M., Ueda Y., Kinoshita M., Suzuki S. A fast and convenient solid phase preparation method for releasing N-glycans from glycoproteins using trypsin- and peptide-N-glycosidase F (PNGase F)-impregnated polyacrylamide gels fabricated in a pipette tip. J. Pharm. Biomed. Anal. 2020;179:112995. PubMed
Wang S., Qin H., Mao J., Fang Z., Chen Y., Zhang X., Hu L., Ye M. Profiling of endogenously intact N-linked and O-linked glycopeptides from human serum using an integrated platform. J. Proteome Res. 2020;19:1423–1434. PubMed
Liu M.Q., Zeng W.F., Fang P., Cao W.Q., Liu C., Yan G.Q., Zhang Y., Peng C., Wu J.Q., Zhang X.J., Tu H.J., Chi H., Sun R.X., Cao Y., Dong M.Q., et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun. 2017;8:438. PubMed PMC
Polasky D.A., Yu F., Teo G.C., Nesvizhskii A.I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat. Methods. 2020;17:1125–1132. PubMed PMC
Bern M., Kil Y.J., Becker C. Byonic: Advanced peptide and protein identification software. Curr. Protoc. Bioinformatics. 2012 Chapter 13:Unit13.20. PubMed PMC
Shen J., Jia L., Dang L., Su Y., Zhang J., Xu Y., Zhu B., Chen Z., Wu J., Lan R., Hao Z., Ma C., Zhao T., Gao N., Bai J., et al. StrucGP: De novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat. Methods. 2021;18:921–929. PubMed
Aitken R.J., Henkel R.R. Sperm cell biology: Current perspectives and future prospects. Asian J. Androl. 2011;13:3–5. PubMed PMC
Cheon Y.P., Kim C.H. Impact of glycosylation on the unimpaired functions of the sperm. Clin. Exp. Reprod. Med. 2015;42:77–85. PubMed PMC
Tecle E., Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev. 2015;82:635–650. PubMed PMC
Ma F., Wu D., Deng L., Secrest P., Zhao J., Varki N., Lindheim S., Gagneux P. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J. Biol. Chem. 2012;287:38073–38079. PubMed PMC
Liu M. Capacitation-associated glycocomponents of mammalian sperm. Reprod. Sci. 2016;23:572–594. PubMed
Redgrove K.A., Nixon B., Baker M.A., Hetherington L., Baker G., Liu D.Y., Aitken R.J. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm-egg recognition. PLoS One. 2012;7 PubMed PMC
Uchida H., Maruyama T., Nishikawa-Uchida S., Miyazaki K., Masuda H., Yoshimura Y. Glycodelin in reproduction. Reprod. Med. Biol. 2013;12:79–84. PubMed PMC
Lan R., Xin M., Hao Z., You S., Xu Y., Wu J., Dang L., Zhang X., Sun S. Biological functions and large-scale profiling of protein glycosylation in human semen. J. Proteome Res. 2020;19:3877–3889. PubMed
Wang G., Wu Y., Zhou T., Guo Y., Zheng B., Wang J., Bi Y., Liu F., Zhou Z., Guo X., Sha J. Mapping of the N-linked glycoproteome of human spermatozoa. J. Proteome Res. 2013;12:5750–5759. PubMed
Pang P.C., Tissot B., Drobnis E.Z., Sutovsky P., Morris H.R., Clark G.F., Dell A. Expression of bisecting type and Lewisx/Lewisy terminated N-glycans on human sperm. J. Biol. Chem. 2007;282:36593–36602. PubMed
Lu J.C., Huang Y.F., Lü N.Q. WHO laboratory manual for the examination and processing of human semen: Its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue. 2010;16:867–871. PubMed
Deutsch E.W., Mendoza L., Shteynberg D., Slagel J., Sun Z., Moritz R.L. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin. Appl. 2015;9:745–754. PubMed PMC
Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. PubMed
Otasek D., Morris J.H., Boucas J., Pico A.R., Demchak B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019;20:185. PubMed PMC
Sun S., Hu Y., Ao M., Shah P., Chen J., Yang W., Jia X., Tian Y., Thomas S., Zhang H. N-GlycositeAtlas: A database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin. Proteomics. 2019;16:35. PubMed PMC
Janiszewska E., Kratz E.M. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol. Reprod. Dev. 2020;87:515–524. PubMed
Zhao T., Jia L., Li J., Ma C., Wu J., Shen J., Dang L., Zhu B., Li P., Zhi Y., Lan R., Xu Y., Hao Z., Chai Y., Li Q., et al. Heterogeneities of site-specific N-glycosylation in HCC tumors with low and high AFP concentrations. Front. Oncol. 2020;10:496. PubMed PMC
Sun S., Hu Y., Jia L., Eshghi S.T., Liu Y., Shah P., Zhang H. Site-specific profiling of serum glycoproteins using N-linked glycan and glycosite analysis revealing atypical N-glycosylation sites on albumin and α-1B-glycoprotein. Anal. Chem. 2018;90:6292–6299. PubMed PMC
Saraswat M., Joenvaara S., Tomar A.K., Singh S., Yadav S., Renkonen R. N-glycoproteomics of human seminal plasma glycoproteins. J. Proteome Res. 2016;15:991–1001. PubMed
Pang P.C., Tissot B., Drobnis E.Z., Morris H.R., Dell A., Clark G.F. Analysis of the human seminal plasma glycome reveals the presence of immunomodulatory carbohydrate functional groups. J. Proteome Res. 2009;8:4906–4915. PubMed
Link-Lenczowski P., Bubka M., Balog C.I.A., Koeleman C.A.M., Butters T.D., Wuhrer M., Litynska A. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans. Glycoconj. J. 2018;35:217–231. PubMed PMC
Lu J., Isaji T., Im S., Fukuda T., Kameyama A., Gu J. Expression of N-acetylglucosaminyltransferase III suppresses alpha2,3-sialylation, and its distinctive functions in cell migration are attributed to alpha2,6-sialylation Levels. J. Biol. Chem. 2016;291:5708–5720. PubMed PMC
Nowicka-Bauer K., Kurpisz M. Current knowledge of the human sperm proteome. Expert Rev. Proteomics. 2013;10:591–605. PubMed
Bell A.D., Mello C.J., Nemesh J., Brumbaugh S.A., Wysoker A., McCarroll S.A. Insights into variation in meiosis from 31,228 human sperm genomes. Nature. 2020;583:259–264. PubMed PMC
Jodar M., Soler-Ventura A., Oliva R., Molecular Biology of Reproduction and Development Research Group Semen proteomics and male infertility. J. Proteomics. 2017;162:125–134. PubMed
Varki A., Gagneux P. Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 2012;1253:16–36. PubMed PMC
Ma X., Pan Q., Feng Y., Choudhury B.P., Ma Q., Gagneux P., Ma F. Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biol. Reprod. 2016;94:123. PubMed PMC
Kizuka Y., Taniguchi N. Enzymes for N-glycan branching and their genetic and nongenetic regulation in cancer. Biomolecules. 2016;6:25. PubMed PMC
Nakano M., Mishra S.K., Tokoro Y., Sato K., Nakajima K., Yamaguchi Y., Taniguchi N., Kizuka Y. Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan. Mol. Cell. Proteomics. 2019;18:2044–2057. PubMed PMC
Mucha E., Lettow M., Marianski M., Thomas D.A., Struwe W.B., Harvey D.J., Meijer G., Seeberger P.H., Helden G., Pagel K. Fucose migration in intact protonated glycan ions: A universal phenomenon in mass spectrometry. Angew. Chem. Int. Ed. Engl. 2018;57:7440–7443. PubMed
Young S.A., Aitken J., Baker M.A. Phosphorylation of izumo1 and its role in male infertility. Asian J. Androl. 2015;17:708–710. PubMed PMC
Dutta S., Aoki K., Doungkamchan K., Tiemeyer M., Bovin N., Miller D.J. Sulfated Lewis A trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J. Biol. Chem. 2019;294:13445–13463. PubMed PMC
Vizcaino J.A., Cote R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., Griss J., Alpi E., Birim M., Contell J., O'Kelly G., Schoenegger A., Ovelleiro D., Perez-Riverol Y., Reisinger F., et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Res. 2013;41:D1063–D1069. PubMed PMC