Purification and characterization of anti-phytopathogenic fungi angucyclinone from soil-derived Streptomyces cellulosae

. 2022 Jun ; 67 (3) : 517-522. [epub] 20220222

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35194755

Odkazy
PubMed 35194755
DOI 10.1007/s12223-022-00957-6
PII: 10.1007/s12223-022-00957-6
Knihovny.cz E-zdroje

Actinomycete strain YIM PH20352, isolated from the rhizosphere soil sample of Panax notoginseng collected in WenShang, Yunnan Province, China, exhibited antifungal activity against some phytopathogenic fungi. The structures of bioactive molecules, isolated from the ethyl acetate extract of the fermentation broth of the strain, were identified as rabelomycin (1) and dehydrorabelomycin (2) based on extensive spectroscopic analyses. Compound 1 exhibited antifungal activity against four tested root-rot pathogens of the Panax notoginseng including Plectosphaerella cucumerina, Alternaria panax, Fusarium oxysporum, and Fusarium solani with the MIC values at 32, 64, 128, and 128 μg/mL, respectively. Compound 2 exhibited antifungal activity against F. oxysporum, P. cucumerina, F. solani, and A. panax with the MIC values at 64, 64, 128, and 128 μg/mL, respectively. Based on the phylogenetic analyses, the closest phylogenetic relative of strain YIM PH20352 is Streptomyces cellulosae NBRC 13027 T (AB184265) (99.88%), so strain YIM PH20352 was identified as Streptomyces cellulosae. To the best of our knowledge, this is the first report of rabelomycin and rabelomycin-type antibiotics from Streptomyces cellulosae and their antifungal activity against root-rot pathogens of the Panax notoginseng.

Zobrazit více v PubMed

Abdel-Fatah MK, Khella YE (1995) Studies on the chitinolytic enzymes of Streptomycetes. 2-purification and characterization of chitinase enzyme from a chitin-degrading Streptomyces cellulosae (F-2) strain. Egyptian J Microbiol 30(1):67–83

Abo-Zaid G, Abdelkhalek A, Matar S, Darwish M, Abdel-Gayed M (2021) Application of bio-friendly formulations of chitinase-producing Streptomyces cellulosae actino 48 for controlling peanut soil-borne diseases caused by Sclerotium rolfsii. J Fungi 7:167–188 DOI

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43 DOI

Bringmann G, Lang G, Maksimenka K, Hamm A, Gulder TAM, Dieter A, Bull AT, Stach JEM, Kocher N, Müller WEG, Fiedler HP (2005) Gephyromycin, the first bridged angucyclinone, from Streptomyces griseus strain NTK 14. Phytochemistry 66:1366–1373 DOI

Chen X, Hu LF, Huang XS, Zhao LX, Miao CP, Chen YW, Xu LH, Han L, Li YQ (2019) Isolation and characterization of new phenazine metabolites with antifungal activity against root-rot pathogens of Panax Notoginseng from Streptomyces. J Agric Food Chem 67:11403–11407 DOI

Gerlitz M, Udvarnoki G, Rohr J (1995) Biosyntheses of novel emycins from the mutant strain Streptomyces cellulosae ssp. griseoincarnatus 1114–2**. Angew Chem Int Ed Engl 34:1617–1621 DOI

Harrison PH, Noguchi H, Vederas JC (1986) Biosynthesis of polyene antibiotics: intact incorporation of 13C-labeled octanoate into fungichromin by Streptomyces cellulosae. J Am Chem Soc 108:3833–3834 DOI

Höfs R, Walker M, Zeeck A (2000) Hexacyclinic acid, a polyketide from Streptomyces with a novel carbon skeleton. Angew Chem Int Ed Engl 39:3258–3261 DOI

Hu LF, Chen X, Han L, Zhao LX, Miao CP, Huang XS, Chen YW, Li P, Li YQ (2019) Two new phenazine metabolites with antimicrobial activities from soil-derived Streptomyces species. J Antibiot 72(3):574–577 DOI

Hwang BK, Lim SW, Kim BS, Lee JY, Moon SS (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol 67(8):3739–3745 DOI

Kharel MK, Pahari P, Lian H, Rohr J (2010) Enzymatic total synthesis of rabelomycin, an angucycline group antibiotic. Org Lett 12(12):2814–2817 DOI

Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Eric Nybo S, Shaaban KA, Rohr J (2012) Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29:264–325 DOI

Li YQ, Han L, Rong H, Li LY, Zhao LX, Wu LX, Xu LH, Jiang Y, Huang XS (2015) Diastaphenazine, a new dimeric phenazine from an endophytic Streptomyces diastaticus subsp. Ardesiacus J Antibiot 68(3):210–212 DOI

Li Z, Rawlings BJ, Harrison PH, Vederas JC (1989) Production of new polyene antibiotic by Streptomyces cellulose after addition of ethyl (Z)-16-phenylhexadec-9-enoate. J Antibiot 42(4):577–584 DOI

Liu WC, Parker WL, Slusarchyk DS (1970) Isolation, characterization, and structure of rabelomycin, a new antibiotic. J Antibiot 23(9):437–441 DOI

Muro T, Tominaga Y, Okada S (1984) Purification and some properties of a protease from Streptomyces cellulosae. Agric Biol Chem 48(5):1223–1230

Noguchi H, Harrison PH, Arai K, Nakashima TT, Trimble LA, Vederas JC (1988) Biosynthesis and full NMR assignment of fungichromin, a polyene antibiotic from Streptomyces cellulose. J Am Chem Soc 110:2938–2945 DOI

Ogawara H, Horikawa S (1979) Purification of β-lactamase from Streptomyces cellulosae by affinity chromatography on Blue Sepharose. J Antibiot 32(12):1328–1335 DOI

Parker KA, Ding QJ (2000) A general approach to angucyclines: synthesis of hatomarubigin A, rubiginone B2, antibiotic X-1488E, 6-hydroxytetrangulol, and tetrangulol. Tetrahedron 56:10249–10254 DOI

Patrikainen P, Kallio P, Fan KQ, Klika KD, Shaaban KA, Mäntsälä P, Rohr J, Yang KQ, Niemi J, Metsä-Ketelä M (2012) Tailoring enzymes involved in the biosynthesis of angucyclines contain latent context-dependent catalytic activities. Chem Biol 19(5):647–655 DOI

Rohr J, Thiericke R (1992) Angucycline group antibiotics. Nat Prod Rep 9:103–137 DOI

Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from actinomycetes. Cent Eur J Biol 7(3):373–390

Takahashi Y, Nakashima T (2018) Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiot 7:45. https://doi.org/10.3390/antibiotics7020045 DOI

Tang D, Liu LL, He QR, Yan W, Li D, Gao JM (2018) Ansamycins with antiproliferative and antineuroinflammatory activity from moss-soil-derived Streptomyces cacaoi subsp. asoensis H2S5. J Nat Prod 81:1984–1991 DOI

Voitsekhovskaia I, Paulus C, Dahlem C, Rebets Y, Nadmid S, Zapp J, Axenov-Gribanov D, Rückert C, Timofeyev M, Kalinowski J, Kiemer AK, Luzhetskyy A (2020) Baikalomycins A-C, new aquayamycin-type angucyclines isolated from Lake Baikal derived Streptomyces sp. IB201691–2A. Microorganisms 8(5):680–700

Wei J, Liu LL, Dong S, Li H, Tang D, Zhang Q, Xue QH, Gao JM (2016) Gabosines P and Q, new carbasugars from Streptomyces sp. and their α-glucosidase inhibitory activity. Bioorg Med Chem Lett 26:4903–4906 DOI

Xu XD, Han L, Zhao LX, Chen X, Miao CP, Hu LF, Huang XS, Chen YW, Li YQ (2019) Echinosporin antibiotics isolated from Amycolatopsis strain and their antifungal activity against root-rot pathogens of the Panax notoginseng. Folia Microbiol 64:171–175 DOI

Yamashita N, Harada T, Shin-Ya K, Seto H (1998) 6-Hydroxytetrangulol, a new CPP32 protease inducer produced by Streptomyces sp. J Antibiot 51(1):79–81 DOI

Yang L, Lk H, Li HY, Li WL (2020) Antibiotic angucycline derivatives from the deepsea-derived Streptomyces lusitanus. Nat Prod Res 34(24):3444–3450 DOI

Zhang JY, Duan YW, Zhu XC, Yan XH (2021) Novel angucycline/angucyclinone family of natural products discovered between 2010 and 2020. Chin J Biotech 37(6):2147–2165

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...