• This record comes from PubMed

miR-491-5p inhibits Emilin 1 to promote fibroblasts proliferation and fibrosis in gluteal muscle contracture via TGF-Beta1/Smad2 pathway

. 2022 Apr 30 ; 71 (2) : 285-295. [epub] 20220411

Language English Country Czech Republic Media print-electronic

Document type Journal Article

Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles due to multiple etiologies. Emilin 1 plays a determinant role in fibers formation, but its role in the progression of GMC remains unclear. The present study was aimed to search for the predictive role and regulatory mechanism of Emilin 1 on GMC. Here, Protein and mRNA expression of Emilin 1 were decreased in GMC tissues compared to normal muscle tissues. Using the anslysis of target prediction, Emilin 1 was observed to be a potential downstream sponge of miR-491-5p. In comparison to Emilin 1, miR-491-5p showed a aberrant elevation in GMC tissues, which was further proven to have a negative correlation with Emilin 1. The direct binding of miR-491-5p to Emilin 1 mRNA was confirmed by luciferase reporter gene assay, and miR-491-5p mimics inhibited, while miR-491-5p inhibitor promoted the protein expression and secretion of Emilin 1 in contraction bands (CB) fibroblasts. Additionally, miR-491-5p mimics promoted the expression of cyclin-dependent kinase 2 and cyclin D1 and the proliferation of CB fibroblasts, which could be reversed by Emilin 1 overexpression. Mechanistically, miR-491-5p mimics possibly activated transforming growth factor beta1 (TGF-beta1)/Smad3 signal cascade via binding to 3'-untranslated region of Emilin 1 mRNA, thereby promoting the progression of fibrosis of CB fibroblasts. Collectively, miR-491-5p inhibited Emilin 1 expression, and subsequently promoted CB fibroblasts proliferation and fibrosis via activating TGF-beta1/Smad3 signal axis. MiR-491-5p might be a potentially effective biomarker for predicting GMC, providing a novel therapeutic strategy for GMC.

See more in PubMed

Ye B, Zhou P, Xia Y, Chen Y, Yu J, Xu S. New minimally invasive option for the treatment of gluteal muscle contracture. Orthopedics. 2012;35:e1692–1698. doi: 10.3928/01477447-20121120-11. PubMed DOI

Scully WF, White KK, Song KM, Mosca VS. Injection-induced gluteus muscle contractures: diagnosis with the “reverse Ober test” and surgical management. J Pediatr Orthop. 2015;35:192–198. doi: 10.1097/BPO.0000000000000238. PubMed DOI

Rai S, Meng C, Wang X, Chaudhary N, Jin S, Yang S, Wang H. Gluteal muscle contracture: diagnosis and management options. SICOT J. 2017;3:1–10. doi: 10.1051/sicotj/2016036. PubMed DOI PMC

Liu G, Yang S, Du J, Zheng Q, Shao Z, Yang C. Treatment of severe gluteal muscle contracture in children. J Huazhong Univ Sci Technolog Med Sci. 2008;28:171–173. doi: 10.1007/s11596-008-0214-6. PubMed DOI

Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/Multimerin family. Front Immunol. 2011;2:1–13. doi: 10.3389/fimmu.2011.00093. PubMed DOI PMC

Bressan GM, Daga-Gordini D, Colombatti A, Castellani I, Marigo V, Volpin D. Emilin, a component of elastic fibers preferentially located at the elastin-microfibrils interface. J Cell Biol. 1993;121:201–212. doi: 10.1083/jcb.121.1.201. PubMed DOI PMC

Zanetti M, Braghetta P, Sabatelli P, Mura I, Doliana R, Colombatti A, Volpin D, Bonaldo P, Bressan GM. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol. 2004;24:638–650. doi: 10.1128/MCB.24.2.638-650.2004. PubMed DOI PMC

Kuriyama E, Ochiai H, Inoue Y, Sakamoto Y, Yamamoto N, Utsumi T, Kishi K, Okumoto T, Matsuura A. Characterization of the Capsule Surrounding Smooth and Textured Tissue Expanders and Correlation with Contracture. Plast Reconstr Surg Glob Open. 2017;5:1–7. doi: 10.1097/GOX.0000000000001403. PubMed DOI PMC

Munjal C, Opoka AM, Osinska H, James JF, Bressan GM, Hinton RB. TGF-beta mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease. Dis Model Mech. 2014;7:987–996. doi: 10.1242/dmm.015255. PubMed DOI PMC

Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–338. doi: 10.1038/nrneph.2016.48. PubMed DOI

Kim KK, Sheppard D, Chapman HA. TGF-beta1 Signaling and Tissue Fibrosis. Cold Spring Harb Perspect Biol. 2018;10:1–34. doi: 10.1101/cshperspect.a022293. PubMed DOI PMC

Walton KL, Johnson KE, Harrison CA. Targeting TGF-beta Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol. 2017;8:1–11. doi: 10.3389/fphar.2017.00461. PubMed DOI PMC

Kloen P, Jennings CL, Gebhardt MC, Springfield DS, Mankin HJ. Transforming growth factor-beta: possible roles in Dupuytren’s contracture. J Hand Surg Am. 1995;20:101–108. doi: 10.1016/S0363-5023(05)80067-X. PubMed DOI

Zhao CG, He XJ, Lu B, Li HP, Kang AJ. Increased expression of collagens, transforming growth factor-beta1, and -beta3 in gluteal muscle contracture. BMC Musculoskelet Disord. 2010;11:1–8. doi: 10.1186/1471-2474-11-15. PubMed DOI PMC

Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, Zhang W. Roles of TGF-beta/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9–17. doi: 10.3109/03008207.2014.964400. PubMed DOI PMC

Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell. 2006;124:929–942. doi: 10.1016/j.cell.2005.12.035. PubMed DOI

Carnevale D, Facchinello N, Iodice D, Bizzotto D, Perrotta M, De Stefani D, Pallante F, Carnevale L, Ricciardi F, Cifelli G, Da Ros F, Casaburo M, Fardella S, Bonaldo P, Innocenzi G, Rizzuto R, Braghetta P, Lembo G, Bressan GM. Loss of EMILIN-1 Enhances Arteriolar Myogenic Tone Through TGF-beta (Transforming Growth Factor-beta)-Dependent Transactivation of EGFR (Epidermal Growth Factor Receptor) and Is Relevant for Hypertension in Mice and Humans. Arterioscler Thromb Vasc Biol. 2018;38:2484–2497. doi: 10.1161/ATVBAHA.118.311115. PubMed DOI

Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277:2015–2021. doi: 10.1111/j.1742-4658.2010.07632.x. PubMed DOI PMC

Fan Y, Chen H, Huang Z, Zheng H, Zhou J. Emerging role of miRNAs in renal fibrosis. RNA Biol. 2020;17:1–12. doi: 10.1080/15476286.2019.1667215. PubMed DOI PMC

Ye M, Wang S, Sun P, Qie J. Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis. Biomed Res Int. 2021;2021:1–10. doi: 10.1155/2021/9583932. PubMed DOI PMC

Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol. 2021;599:171–192. doi: 10.1113/JP280405. PubMed DOI PMC

Podkalicka P, Mucha O, Bronisz-Budzynska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Glowniak-Kwitek U, Bukowska-Strakova K, Ciesla M, Kulecka M, Ostrowski J, Mikula M, Potulska-Chromik A, Kostera-Pruszczyk A, Jozkowicz A, Loboda A, Dulak J. Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight. 2020;5:1–19. doi: 10.1172/jci.insight.135576. PubMed DOI PMC

Zhou R, Ren S, Li C, Zhang X, Zhang W. miR-29a is a potential protective factor for fibrogenesis in gluteal muscle contracture. Physiol Res. 2020;69:467–479. doi: 10.33549/physiolres.934295. PubMed DOI PMC

Yuan BT, Qu F, Wang SX, Qi W, Shen XZ, Li CB, Liu YJ. Histology and molecular pathology of iliotibial tract contracture in patients with gluteal muscle contracture. Biosci Rep. 2019;39:1–8. doi: 10.1042/BSR20181351. PubMed DOI PMC

Imhof T, Korkmaz Y, Koch M, Sengle G, Schiavinato A. EMILIN proteins are novel extracellular constituents of the dentin-pulp complex. Sci Rep. 2020;10:1–12. doi: 10.1038/s41598-020-72123-2. PubMed DOI PMC

Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, Doliana R, Bressan GM, Colombatti A. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol. 2008;28:4026–4039. doi: 10.1128/MCB.02062-07. PubMed DOI PMC

Enomoto N, Suda T, Kono M, Kaida Y, Hashimoto D, Fujisawa T, Inui N, Nakamura Y, Imokawa S, Funai K, Chida K. Amount of elastic fibers predicts prognosis of idiopathic pulmonary fibrosis. Respir Med. 2013;107:1608–1616. doi: 10.1016/j.rmed.2013.08.008. PubMed DOI

Nikolaou S, Liangjun H, Tuttle LJ, Weekley H, Christopher W, Lieber RL, Cornwall R. Contribution of denervated muscle to contractures after neonatal brachial plexus injury: not just muscle fibrosis. Muscle Nerve. 2014;49:398–404. doi: 10.1002/mus.23927. PubMed DOI

O’Reilly S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Ther. 2016;18:1–10. doi: 10.1186/s13075-016-0929-x. PubMed DOI PMC

Abdel-Al A, El-Ahwany E, Zoheiry M, Hassan M, Ouf A, Abu-Taleb H, Rahim AA, El-Talkawy MD, Zada S. miRNA-221 and miRNA-222 are promising biomarkers for progression of liver fibrosis in HCV Egyptian patients. Virus Res. 2018;253:135–139. doi: 10.1016/j.virusres.2018.06.007. PubMed DOI

Venugopal SK, Jiang J, Kim TH, Li Y, Wang SS, Torok NJ, Wu J, Zern MA. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol-Gastr L. 2010;298:G101–G106. doi: 10.1152/ajpgi.00220.2009. PubMed DOI PMC

McKiernan PJ, Cunningham O, Greene CM, Cryan SA. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine. 2013;8:3907–3915. doi: 10.2147/IJN.S47551. PubMed DOI PMC

He J, Wang F, Zhang P, Li W, Wang J, Li J, Liu H, Chen X. miR-491 inhibits skeletal muscle differentiation through targeting myomaker. Arch Biochem Biophys. 2017;625–626:30–38. doi: 10.1016/j.abb.2017.05.020. PubMed DOI

Wang F, Zhang QB, Zhou Y, Liu AY, Huang PP, Liu Y. Effect of ultrashort wave treatment on joint dysfunction and muscle atrophy in a rabbit model of extending knee joint contracture: Enhanced expression of myogenic differentiation. Knee. 2020;27:795–802. doi: 10.1016/j.knee.2020.02.013. PubMed DOI

Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 2012;21:410–416. doi: 10.1097/MNH.0b013e328354e559. PubMed DOI PMC

Chung AC, Lan HY. MicroRNAs in renal fibrosis. Front Physiol. 2015;6:1–9. doi: 10.3389/fphys.2015.00050. PubMed DOI PMC

Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:1–13. doi: 10.3389/fphar.2014.00123. PubMed DOI PMC

Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol. 2011;92:158–167. doi: 10.1111/j.1365-2613.2011.00764.x. PubMed DOI PMC

Xiao D, Liang T, Zhuang Z, He R, Ren J, Jiang S, Zhu L, Wang K, Shi D. Lumican promotes joint fibrosis through TGF-beta signaling. FEBS Open Bio. 2020;10:2478–2488. doi: 10.1002/2211-5463.12974. PubMed DOI PMC

Li J, Du S, Sheng X, Liu J, Cen B, Huang F, He Y. MicroRNA-29b Inhibits Endometrial Fibrosis by Regulating the Sp1-TGF-beta1/Smad-CTGF Axis in a Rat Model. Reprod Sci. 2016;23:386–394. doi: 10.1177/1933719115602768. PubMed DOI

Zhou Q, Fan J, Ding X, Peng W, Yu X, Chen Y, Nie J. TGF-{beta}-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells. J Biol Chem. 2010;285:40019–40027. doi: 10.1074/jbc.M110.141341. PubMed DOI PMC

Calyeca J, Balderas-Martinez YI, Olmos R, Jasso R, Maldonado V, Rivera Q, Selman M, Pardo A. Accelerated aging induced by deficiency of Zmpste24 protects old mice to develop bleomycin-induced pulmonary fibrosis. Aging (Albany NY) 2018;10:3881–3896. doi: 10.18632/aging.101679. PubMed DOI PMC

Heller KN, Mendell JT, Mendell JR, Rodino-Klapac LR. MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin. JCI Insight. 2017;2:1–13. doi: 10.1172/jci.insight.93309. PubMed DOI PMC

Tao R, Fan XX, Yu HJ, Ai G, Zhang HY, Kong HY, Song QQ, Huang Y, Huang JQ, Ning Q. MicroRNA-29b-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting COL1A1 and COL3A1. J Cell Biochem. 2018;119:3199–3209. doi: 10.1002/jcb.26475. PubMed DOI

Danussi C, Petrucco A, Wassermann B, Pivetta E, Modica TM, Del Bel Belluz L, Colombatti A, Spessotto P. EMILIN1-alpha4/alpha9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation. J Cell Biol. 2011;195:131–145. doi: 10.1083/jcb.201008013. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...