Amino Acid Supplementation as a Biostimulant in Medical Cannabis (Cannabis sativa L.) Plant Nutrition

. 2022 ; 13 () : 868350. [epub] 20220331

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35432432

There is growing evidence to support the involvement of nutrients and biostimulants in plant secondary metabolism. Therefore, this study evaluated the potential of amino acid-based supplements that can influence different hydroponic nutrient cycles (systems) to enhance the cannabinoid and terpene profiles of medical cannabis plants. The results demonstrate that amino acid biostimulation significantly affected ion levels in different plant tissues (the "ionome"), increasing nitrogen and sulfur content but reducing calcium and iron content in both nutrient cycles. A significantly higher accumulation of nitrogen and sulfur was observed during the recirculation cycle, but the calcium level was lower in the whole plant. Medical cannabis plants in the drain-to-waste cycle matured 4 weeks earlier, but at the expense of a 196% lower maximum tetrahydrocannabinolic acid yield from flowers and a significantly lower concentration of monoterpene compounds than in the recirculation cycle. The amino acid treatments reduced the cannabinolic acid content in flowers by 44% compared to control in both nutritional cycles and increased the monoterpene content (limonene) up to 81% in the recirculation cycle and up to 123% in the drain-to-waste cycle; β-myrcene content was increased up to 139% in the recirculation cycle and up to 167% in the drain-to-waste cycle. Our results suggest that amino acid biostimulant supplements may help standardize the content of secondary metabolites in medical cannabis. Further experiments are needed to identify the optimal nutrient dosage and method of administration for various cannabis chemotypes grown in different media.

Zobrazit více v PubMed

Aguilar S., Gutiérrez V., Sánchez L., Nougier M. (2018). Medicinal cannabis policies and practices around the world. Int. Drug Policy Consort. Briefing paper, 1–32.

Aizpurua-Olaizola O., Soydaner U., Ozturk E., Schibano D., Simsir Y., Navarro P., et al. . (2016). Evolution of the cannabinoid and Terpene content during the growth of Cannabis sativa plants from different Chemotypes. J. Nat. Prod. 79, 324–331. doi: 10.1021/acs.jnatprod.5b00949, PMID: PubMed DOI

Albornoz F. (2016). Crop responses to nitrogen overfertilization: A review. Sci. Hortic. 205, 79–83. doi: 10.1016/j.scienta.2016.04.026 DOI

Audu B., Ofojekwu P., Ujah A., Ajima M. (2014). Phytochemical, proximate composition, amino acid profile and characterization of marijuana (Cannabis sativa L.). J. Phytopharmacol 3, 35–43.

Baker W., Thompson T. (1992). “Determination of total nitrogen in plant samples by Kjeldahl,” in Plant Analysis Reference Procedures for the Southern Region of the United States.), 13–16.

Bernstein N., Gorelick J., Zerahia R., Koch S. (2019). Impact of N, P, K and humic acids supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10:736. doi: 10.3389/fpls.2019.00736, PMID: PubMed DOI PMC

Bouchard M., Dion C. B. (2009). Growers and facilitators: probing the role of entrepreneurs in the development of the cannabis cultivation industry. J. Small Bus. Entrep. 22, 25–37. doi: 10.1080/08276331.2009.10593440 DOI

Bouvier F., Rahier A., Camara B. (2005). Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 44, 357–429. doi: 10.1016/j.plipres.2005.09.003 PubMed DOI

Brighenti V., Pellati F., Steinbach M., Maran D., Benvenuti S. (2017). Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal. 143, 228–236. doi: 10.1016/j.jpba.2017.05.049, PMID: PubMed DOI

Calvo P., Nelson L., Kloepper J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383, 3–41. doi: 10.1007/s11104-014-2131-8 DOI

Caplan D., Dixon M., Zheng Y. (2017a). Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates. HortScience 52, 1796–1803. doi: 10.21273/hortsci12401-17 DOI

Caplan D., Dixon M., Zheng Y. (2017b). Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. HortScience 52, 1307–1312. doi: 10.21273/hortsci11903-17 DOI

Caplan D., Dixon M., Zheng Y. (2019). Increasing inflorescence dry weight and cannabinoid content in medical cannabis using controlled drought stress. HortScience 54, 964–969. doi: 10.21273/HORTSCI13510-18 DOI

Chandra S., Lata H., Khan I. A., Elsohly M. A. (2011). Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2. Physiol. Mol. Biol. Plants 17, 291–295. doi: 10.1007/s12298-011-0066-6, PMID: PubMed DOI PMC

Close D. C., Mcarthur C., Pietrzykowski E., Fitzgerald H., Paterson S. (2004). Evaluating effects of nursery and post-planting nutrient regimes on leaf chemistry and browsing of eucalypt seedlings in plantations. For. Ecol. Manag. 200, 101–112. doi: 10.1016/j.foreco.2004.06.001 DOI

Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448. doi: 10.3389/fpls.2014.00448, PMID: PubMed DOI PMC

Danziger N., Bernstein N. (2021). Light matters: effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Ind crops. Production 164:113351. doi: 10.1016/j.indcrop.2021.113351 DOI

Dewick P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach. Chichester: John Wiley & Sons.

Drugs U.N.O.O., Crime (2009). Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products: Manual for Use by National Drug Testing Laboratories. United Nations Publications.

Du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. doi: 10.1016/j.scienta.2015.09.021 DOI

El-Ghamry A., Abd K., Ghoneem K. (2009). Amino and humic acids promote growth, yield and disease resistance of Faba bean cultivated in clayey soil. Aust. J. Basic Appl. Sci. 3, 731–739.

Fellermeier M., Eisenreich W., Bacher A., Zenk M. H. (2001). Biosynthesis of cannabinoids. Incorporation experiments with (13)C-labeled glucoses. Eur. J. Biochem. 268, 1596–1604. doi: 10.1046/j.1432-1033.2001.02030.x PubMed DOI

Gepstein S., Glick B. R. (2013). Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol. Biol. 82, 623–633. doi: 10.1007/s11103-013-0038-z, PMID: PubMed DOI

Grotenhermen F., Muller-Vahl K. (2012). The therapeutic potential of cannabis and cannabinoids. Dtsch. Arztebl. Int. 109, 495–501. doi: 10.3238/arztebl.2012.0495, PMID: PubMed DOI PMC

Hoenig M. (2003). “Dry ashing,” in Sample Preparation for Trace Element Analysis. eds. Mester Z., Sturgeon R. (Amsterdam: Elsevier; ), 235–254.

Jämtgård S., Näsholm T., Huss-Danell K. (2008). Characteristics of amino acid uptake in barley. Plant Soil 302, 221–231. doi: 10.1007/s11104-007-9473-4 DOI

Janatová A., Fraňková A., Tlustoš P., Hamouz K., Božik M., Klouček P. (2018). Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind. Crop. Prod. 112, 363–367. doi: 10.1016/j.indcrop.2017.12.006 DOI

Jiang M., Zhang J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42, 1265–1273. doi: 10.1093/pcp/pce162, PMID: PubMed DOI

Križman M. (2020). A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur. Food Res. Technol. 246, 315–322. doi: 10.1007/s00217-019-03344-7 DOI

Maeda M., Okada K., Tsukamoto Y., Wakabayashi K., Ito K. (1990). Complex formation of calcium(II) with amino acids under physiological conditions. J. Chem. Soc. Dalton Trans. 8:2337. doi: 10.1039/dt9900002337 DOI

Malík M., Velechovský J., Tlustoš P. (2021). The overview of existing knowledge on medical cannabis plants growing. Plant Soil Environ. 67, 425–442. doi: 10.17221/96/2021-PSE DOI

Mansouri H., Asrar Z., Szopa J. (2009). Effects of ABA on primary terpenoids and Δ9-tetrahydrocannabinol in Cannabis sativa L. at flowering stage. Plant Growth Regul. 58, 269–277. doi: 10.1007/s10725-009-9375-y PubMed DOI

Matsumoto S., Ae N., Yamagata M. (1999). Nitrogen uptake response of vegetable crops to organic materials. Soil Sci. Plant Nutr. 45, 269–278. doi: 10.1080/00380768.1999.10409342 DOI

Mccullough D. G., Kulman H. M. (1991). Effects of nitrogen fertilization on young jack pine (Pinus banksiana) and on its suitability as a host for jack pine budworm (Choristoneura pinus pinus) (Lepidoptera: Tortricidae). Can. J. For. Res. 21, 1447–1458. doi: 10.1139/x91-204 DOI

Mcpartland J. M. (2018). Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res. 3, 203–212. doi: 10.1089/can.2018.0039, PMID: PubMed DOI PMC

Meier C., Mediavilla V. (1998). Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J. Int. Hemp. Assoc. 5, 16–20.

Miholová D., Mader P., Száková J., Slámová A., Svatoš Z. (1993). Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresenius J. Anal. Chem. 345, 256–260. doi: 10.1007/BF00322606 DOI

Ormeno E., Fernandez C. (2012). Effect of soil nutrient on production and diversity of volatile Terpenoids from plants. Curr. Bioact. Compd. 8, 71–79. doi: 10.2174/157340712799828188, PMID: PubMed DOI PMC

Pate D. W. (1994). Chemical ecology of cannabis. J. Int. Hemp. Assoc. 2, 32–37.

Persson J., Nasholm T. (2001). A GC-MS method for determination of amino acid uptake by plants. Physiol. Plant. 113, 352–358. doi: 10.1034/j.1399-3054.2001.1130308.x, PMID: PubMed DOI

Pogliani L. (1992). Molecular connectivity model for determination of isoelectric point of amino acids. J. Pharm. Sci. 81, 334–336. doi: 10.1002/jps.2600810407, PMID: PubMed DOI

Potter D. J. (2014). A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6, 31–38. doi: 10.1002/dta.1531, PMID: PubMed DOI

Pratelli R., Pilot G. (2014). Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 65, 5535–5556. doi: 10.1093/jxb/eru320, PMID: PubMed DOI

Ryan P., Delhaize E., Jones D. (2001). Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560. doi: 10.1146/annurev.arplant.52.1.527 PubMed DOI

Saloner A., Bernstein N. (2020). Response of medical cannabis (Cannabis sativa L.) to nitrogen supply Under long photoperiod. Front. Plant Sci. 11:572293. doi: 10.3389/fpls.2020.572293, PMID: PubMed DOI PMC

Saloner A., Bernstein N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind crops. Production 167:113516. doi: 10.1016/j.indcrop.2021.113516 DOI

Saloner A., Sacks M. M., Bernstein N. (2019). Response of medical cannabis (Cannabis sativa L.) genotypes to K supply Under long photoperiod. Front. Plant Sci. 10:1369. doi: 10.3389/fpls.2019.01369, PMID: PubMed DOI PMC

Sauheitl L., Glaser B., Weigelt A. (2009). Uptake of intact amino acids by plants depends on soil amino acid concentrations. Environ. Exp. Bot. 66, 145–152. doi: 10.1016/j.envexpbot.2009.03.009 DOI

Shiponi S., Bernstein N. (2021a). The highs and lows of P supply in medical cannabis: effects on cannabinoids, the Ionome, and Morpho-physiology. Front. Plant Sci. 12:657323. doi: 10.3389/fpls.2021.657323, PMID: PubMed DOI PMC

Shiponi S., Bernstein N. (2021b). Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: functional phenotyping and the ionome. Ind. crops. Production 161:113154. doi: 10.1016/j.indcrop.2020.113154 DOI

Talukder M. R., Asaduzzaman M., Tanaka H., Asao T. (2018). Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics. Sci. Hortic. 239, 93–103. doi: 10.1016/j.scienta.2018.05.033 DOI

Tedesco M. A., Duerr E. O. (1989). Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J. Appl. Phycol. 1, 201–209. doi: 10.1007/bf00003646 DOI

Trapp S. (2004). Plant uptake and transport models for neutral and ionic chemicals. Environ. Sci. Pollut. Res. Int. 11, 33–39. doi: 10.1065/espr2003.08.169, PMID: PubMed DOI

Ugolini L., Cinti S., Righetti L., Stefan A., Matteo R., D’avino L., et al. . (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Ind. Crop. Prod. 75, 15–23. doi: 10.1016/j.indcrop.2014.11.026 DOI

Vanhove W., Van Damme P., Meert N. (2011). Factors determining yield and quality of illicit indoor cannabis (cannabis spp.) production. Forensic Sci. Int. 212, 158–163. doi: 10.1016/j.forsciint.2011.06.006, PMID: PubMed DOI

Velazquez L., Hernandez M., Leon M., Domínguez R.B., Gutierrez J. (2013). “First advances on the development of a hydroponic system for cherry tomato culture”, in 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE): IEEE), 155–159.

Velechovský J., Malík M., Kaplan L., Tlustoš P. (2021). Application of individual Digestate forms for the improvement of hemp production. Agriculture 11:1137. doi: 10.3390/agriculture11111137 DOI

Yao X., Nie J., Bai R., Sui X. (2020). Amino acid transporters in plants: identification and function. Plants 9:972. doi: 10.3390/plants9080972, PMID: PubMed DOI PMC

Yep B., Zheng Y., Beres B. (2021). Potassium and micronutrient fertilizer addition in a mock aquaponic system for drug-type Cannabis sativa L. cultivation. Can. J. Plant Sci. 101, 341–352. doi: 10.1139/cjps-2020-0107 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...