Chiral analysis of β-alanyl-d,l-tyrosine and its derivatives and estimation of binding constants of their complexes with 2-hydroxypropyl-β-cyclodextrin by capillary electrophoresis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-03899S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
RVO 61388963
Czech Academy of Sciences
PubMed
35462458
DOI
10.1002/jssc.202200158
Knihovny.cz E-zdroje
- Klíčová slova
- 2-hydroxypropyl-β-cyclodextrin, Binding constant, capillary electrophoresis, chiral separation, enantioseparation, β-alanyl-tyrosine,
- MeSH
- beta-cyklodextriny * chemie MeSH
- cyklodextriny * chemie MeSH
- elektroforéza kapilární metody MeSH
- elektrolyty MeSH
- hydroxypropyl beta cyklodextrin MeSH
- koncentrace vodíkových iontů MeSH
- stereoizomerie MeSH
- tromethamin MeSH
- tyrosin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-cyklodextriny * MeSH
- cyklodextriny * MeSH
- elektrolyty MeSH
- hydroxypropyl beta cyklodextrin MeSH
- tromethamin MeSH
- tyrosin MeSH
Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide β-alanyl-tyrosine (β-Ala-Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β-Ala-d-Tyr and β-Ala-l-Tyr), and enantiomers of their amidated and acetylated derivatives, β-Ala-d,l-Tyr-NH2 and N-Ac-β-Ala-d,l-Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β-Ala-d,l-Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 2.5, and 20 mg/mL 2-hydroxypropyl-β-cyclodextrin as chiral selector; (ii) for β-Ala-d,l-Tyr-NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 3.5, and 30 mg/mL 2-hydroxypropyl-β-cyclodextrin; and (iii) for enantiomers of N-Ac-β-Ala-d,l-Tyr in alkaline background electrolyte composed of 50/49 mM Na2 B4 O7 /NaOH, pH 10.5, and 60 mg/mL 2-hydroxypropyl-β-cyclodextrin. From CE analyses of mixed samples of isolated β-Ala-Tyr and synthetic standards β-Ala-l-Tyr and β-Ala-d-Tyr, it turned out that isolated β-Ala-Tyr was pure l-enantiomer. In addition, the average apparent binding constants, Kb , and average actual ionic mobilities of the complexes of β-Ala-d,l-Tyr and its above derivatives with 2-hydroxypropyl-β-cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6-9.2) × 10-9 m2 /V/s, and anionic mobilities to (-1.3-1.6) × 10-9 m2 /V/s.
Zobrazit více v PubMed
Chiou SJ, Kotanen S, Cerstiaens A, Daloze D, Pasteels JM, Lesage A, Drijfhout JW, Verhaert P, Dillen L, Claeys M, De Meulemeester H, Nuttin B, De Loof A, Schoofs L. Purification of toxic compounds from larvae of the gray fleshfly: the identification of paralysins. Biochem Biophys Res Commun. 1998;246:457-62.
Chiou SJ, Cerstiaens A, Kotanen SP, De Loof A, Schoofs L. Insect larvae contain substances toxic to adults: the discovery of paralysins. J Insect Physiol. 1998;44:405-11.
Levenbook L, Bodnaryk RP, Spande TF. Beta-alanyl-l-tyrosine: chemical synthesis, properties and occurrence in larvae of fleshfly Sarcophaga bullata Parker. Biochem J. 1969;113:837-41.
WHO. Antimicrobial resistance. World Health Organization. 2020. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Datta S, Roy A. Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther. 2021;27:555-77.
Mahlapuu M, Bjorn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40:978-92.
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389-95.
Ye GZ, Wu HY, Huang JJ, Wang W, Ge KK, Li GD, Zhong J, Huang QS. LAMP2: a major update of the database linking antimicrobial peptides. Database 2020; 2020:baaa061.
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 2021;78:4259-82.
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc B-Biol Sci. 2016;371:20150290.
Meylaers K, Cerstiaens A, Vierstraete E, Baggerman G, Michiels CW, De Loof A, Schoofs L. Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of beta-alanyl-tyrosine. Curr Pharm Design. 2003;9:159-74.
Kyrikou I, Benetis NP, Chatzigeorgiou P, Zervou M, Viras K, Poulos C, Mavromoustakos T. Interactions of the dipeptide paralysin beta-Ala-Tyr and the amino acid Glu with phospholipid bilayers. Biochim Biophys Acta-Biomembr. 2008;1778:113-24.
Solinova V, Sazelova P, Masova A, Jiracek J, Kasicka V. Application of capillary and free-flow zone electrophoresis for analysis and purification of antimicrobial beta-alanyl-tyrosine from hemolymph of fleshfly Neobellieria bullata. Molecules. 2021;26:5636.
Kasicka V, Prusik Z, Pospisek J. Conversion of capillary zone electrophoresis to free-flow zone electrophoresis using a simple model of their correlation: application to synthetic enkephalin-type peptide analysis and preparation. J Chromatogr. 1992;608:13-22.
Kasicka V, Prusik Z, Sazelova P, Jiracek J, Barth T. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes: application to analysis and preparation of fragments of insulin. J Chromatogr A. 1998;796:211-20.
Fanali S, Chankvetadze B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis. 2019;40:2420-37.
Bernardo-Bermejo S, Sanchez-Lopez E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Anal Chem. 2020;124:115807.
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis. 2021;42:38-57.
El Deeb S, Silva CF, Nascimento CS, Hanafi RS, Borges KB. Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling. Molecules. 2021;26:2841.
Scriba GKE. Recent developments in peptide stereoisomer separations by capillary electromigration techniques . Electrophoresis. 2009;30:S222-8.
Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci. 2014;37:2447-66.
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci. 2018;41:385-97.
Miksik I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci. 2019;42:385-97.
Ali F, Alothman ZA, Al-Shaalan NH. Mixed-mode open tubular column for peptide separations by capillary electrochromatography. J Sep Sci. 2021;44:2602-11.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2017-mid 2019). Electrophoresis. 2020;41:10-35.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis. 2022;43:82-108.
Rezanka P, Navratilova K, Rezanka M, Kral V, Sykora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis. 2014;35:2701-21.
Scriba GKE. Chiral recognition in separation sciences. Part I: polysaccharide and cyclodextrin selectors. Trends Anal Chem. 2019;120:115639.
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676-708.
Zhu QF, Heinemann SH, Schonherr R, Scriba GKE. Capillary electrophoresis separation of peptide diastereomers that contain methionine sulfoxide by dual cyclodextrin-crown ether systems. J Sep Sci. 2014;37:3548-54.
Konjaria ML, Scriba GKE. Effects of amino acid-derived chiral ionic liquids on cyclodextrin-mediated capillary electrophoresis enantioseparations of dipeptides. J Chromatogr A. 2021;1652:462342.
Kang JW, Wistuba D, Schurig V. Fast enantiomeric separation with vancomycin as chiral additive by co-electroosmotic flow capillary electrophoresis: increase of the detection sensitivity by the partial filling technique. Electrophoresis. 2003;24:2674-9.
Wan H, Blomberg LG. Chiral separation of DL-peptides and enantioselective interactions between teicoplanin and d-peptides in capillary electrophoresis. Electrophoresis. 1997;18:943-9.
Verleysen K, Sabah S, Scriba G, Chen A, Sandra P. Evaluation of the enantioselective possibilities of sulfated cyclodextrins for the separation of aspartyl di- and tripeptides in capillary electrophoresis. J Chromatogr A. 1998;824:91-7.
Sabah S, Scriba GKE. Electrophoretic stereoisomer separation of aspartyl dipeptides and tripeptides in untreated fused-silica and polyacrylamide-coated capillaries using charged cyclodextrins. J Chromatogr A. 1998;822:137-45.
Sabbah S, Scriba GKE. Influence of the structure of cyclodextrins and amino acid sequence of dipeptides and tripeptides on the pH-dependent reversal of the migration order in capillary electrophoresis. J Chromatogr A. 2000;894:267-72.
Sabbah S, Scriba GKE. Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-beta-cyclodextrin and succinyl-beta-cyclodextrin: influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis. 2001;22:1385-93.
Sabbah S, Suss F, Scriba GKE. pH-dependence of complexation constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Electrophoresis. 2001;22:3163-70.
Suss F, Sanger-van de Griend C, Scriba GKE. Migration order of dipeptide and tripeptide enantiomers in the presence of single isomer and randomly sulfated cyclodextrins as a function of pH. Electrophoresis. 2003;24:1069-76.
Suss F, Poppitz W, Sanger-van de Griend C, Scriba GKE. Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using randomly substituted and single isomer sulfated and sulfonated cyclodextrins. Electrophoresis. 2001;22:2416-23.
Konjaria ML, Scriba GKE. Enantioseparation of analogs of the dipeptide alanyl-phenylalanine by capillary electrophoresis using neutral cyclodextrins as chiral selectors. J Chromatogr A. 2020;1623:461158.
Konjaria ML, Scriba GKE. Enantioseparation of alanyl-phenylalanine analogs by capillary electrophoresis using negatively charged cyclodextrins as chiral selectors. J Chromatogr A. 2020;1623:461585.
Ciencialova A, Neubauerova T, Sanda M, Sindelka R, Cvacka J, Voburka Z, Budesinsky M, Kasicka V, Sazelova P, Solinova V, Mackova M, Koutek B, Jiracek J. Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga bullata. J Pept Sci. 2008;14:670-82.
Yu RB, Quirino JP. Chiral selectors in capillary electrophoresis: trends during 2017-2018. Molecules. 2019;24:1135.
Kasicka V, Prusik Z. Application of capillary isotachophoresis in peptide analysis. J Chromatogr. 1991;569:123-74.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis. 2018;39:209-34.
Penn SG, Bergstrom ET, Knights I, Liu GY, Ruddick A, Goodall DM. Capillary electrophoresis as a method for determining binding constants: application to the binding of cyclodextrins and nitrophenolates. J Phys Chem. 1995;99:3875-80.
Konasova R, Dytrtova JJ, Kasicka V. Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis. J Chromatogr A. 2015;1408:243-9.