Molecular profiling and clinical implications of patients with acute myeloid leukemia and extramedullary manifestations

. 2022 May 13 ; 15 (1) : 60. [epub] 20220513

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35562747
Odkazy

PubMed 35562747
PubMed Central PMC9107142
DOI 10.1186/s13045-022-01267-7
PII: 10.1186/s13045-022-01267-7
Knihovny.cz E-zdroje

BACKGROUND: Extramedullary manifestations (EM) are rare in acute myeloid leukemia (AML) and their impact on clinical outcomes is controversially discussed. METHODS: We retrospectively analyzed a large multi-center cohort of 1583 newly diagnosed AML patients, of whom 225 (14.21%) had EM. RESULTS: AML patients with EM presented with significantly higher counts of white blood cells (p < 0.0001), peripheral blood blasts (p < 0.0001), bone marrow blasts (p = 0.019), and LDH (p < 0.0001). Regarding molecular genetics, EM AML was associated with mutations of NPM1 (OR: 1.66, p < 0.001), FLT3-ITD (OR: 1.72, p < 0.001) and PTPN11 (OR: 2.46, p < 0.001). With regard to clinical outcomes, EM AML patients were less likely to achieve complete remissions (OR: 0.62, p = 0.004), and had a higher early death rate (OR: 2.23, p = 0.003). Multivariable analysis revealed EM as an independent risk factor for reduced overall survival (hazard ratio [HR]: 1.43, p < 0.001), however, for patients who received allogeneic hematopoietic cell transplantation (HCT) survival did not differ. For patients bearing EM AML, multivariable analysis unveiled mutated TP53 and IKZF1 as independent risk factors for reduced event-free (HR: 4.45, p < 0.001, and HR: 2.05, p = 0.044, respectively) and overall survival (HR: 2.48, p = 0.026, and HR: 2.63, p = 0.008, respectively). CONCLUSION: Our analysis represents one of the largest cohorts of EM AML and establishes key molecular markers linked to EM, providing new evidence that EM is associated with adverse risk in AML and may warrant allogeneic HCT in eligible patients with EM.

Department of Hematology Oncology and Immunology Philipps University Marburg Marburg Germany

Department of Hematology Oncology and Palliative Care Rems Murr Hospital Winnenden Winnenden Germany

Department of Hematology Oncology and Palliative Care Robert Bosch Hospital Stuttgart Germany

Department of Hematology Oncology Hemostaseology and Cell Therapy University Hospital RWTH Aachen Aachen Germany

Department of Hematology University Hospital Essen Essen Germany

Department of Internal Medicine 1 University Hospital Carl Gustav Carus Fetscherstraße 74 01307 Dresden Saxony Germany

Department of Internal Medicine 2 Jena University Hospital Jena Germany

Department of Internal Medicine 5 Paracelsus Medizinische Privatuniversität and University Hospital Nuremberg Nuremberg Germany

Department of Internal Medicine Hematology and Oncology Masaryk University Hospital Brno Czech Republic

Department of Internal Medicine University Hospital Kiel Kiel Germany

Department of Medicine A University Hospital Münster Münster Germany

Department of Pathology University Hospital Carl Gustav Carus Dresden Germany

DKMS Clinical Trials Unit Dresden Germany

German Cancer Research Center and Medical Clinic 5 University Hospital Heidelberg Heidelberg Germany

German Consortium for Translational Cancer Research DKFZ Heidelberg Germany

Medical Care Center University Hospital Carl Gustav Carus Dresden Germany

Medical Clinic 1 Hematology and Celltherapy University Hospital Leipzig Leipzig Germany

Medical Clinic 2 St Bernward Hospital Hildesheim Germany

Medical Clinic 2 University Hospital Frankfurt Frankfurt Germany

Medical Clinic 3 Chemnitz Hospital AG Chemnitz Germany

Medical Clinic 3 St Marien Hospital Siegen Siegen Germany

Medical Clinic 5 University Hospital Erlangen Erlangen Germany

Medical Clinic and Policlinic 2 University Hospital Würzburg Würzburg Germany

National Center for Tumor Diseases Dresden Germany

Zobrazit více v PubMed

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI

Yilmaz AF, Saydam G, Sahin F, Baran Y. Granulocytic sarcoma: a systematic review. Am J Blood Res. 2013;3(4):265–270. PubMed PMC

King A. Case of chloroma. Mon J Med Sci. 1853;8(44):97.

Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118(14):3785–3793. doi: 10.1182/blood-2011-04-347229. PubMed DOI

Goyal G, Bartley AC, Patnaik MM, Litzow MR, Al-Kali A, Go RS. Clinical features and outcomes of extramedullary myeloid sarcoma in the United States: analysis using a national data set. Blood Cancer J. 2017;7(8):e592–e592. doi: 10.1038/bcj.2017.79. PubMed DOI PMC

Wiernik PH, Serpick AA. Granulocytic sarcoma (chloroma) Blood. 1970;35(3):361–369. doi: 10.1182/blood.V35.3.361.361. PubMed DOI

Liu PI, Ishimaru T, McGregor DH, Okada H, Steer A. Autopsy study of granulocytic sarcoma (chloroma) in patients with myelogenous leukemia, Hiroshima-Nagasaki 1949–1969. Cancer. 1973;31(4):948–955. doi: 10.1002/1097-0142(197304)31:4<948::AID-CNCR2820310428>3.0.CO;2-N. PubMed DOI

Avni B, Koren-Michowitz M. Myeloid sarcoma: current approach and therapeutic options. Ther Adv Hematol. 2011;2(5):309. doi: 10.1177/2040620711410774. PubMed DOI PMC

Stölzel F, Lüer T, Löck S, Parmentier S, Kuithan F, Kramer M, et al. The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the prospective PETAML trial. Haematologica. 2020;105(6):1552. doi: 10.3324/haematol.2019.223032. PubMed DOI PMC

Ullman DI, Dorn D, Jones JA, Fasciano D, Ping Z, Kanakis C, et al. Clinicopathological and molecular characteristics of extramedullary acute myeloid leukaemia. Histopathology. 2019;75(2):185–192. doi: 10.1111/his.13864. PubMed DOI

Solh M, Solomon S, Morris L, Holland K, Bashey A. Extramedullary acute myelogenous leukemia. Blood Rev. 2016;30(5):333–339. doi: 10.1016/j.blre.2016.04.001. PubMed DOI

Röllig C, Thiede C, Gramatzki M, Aulitzky W, Bodenstein H, Bornhäuser M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116(6):971–978. doi: 10.1182/blood-2010-01-267302. PubMed DOI

Schaich M, Parmentier S, Kramer M, Illmer T, Stölzel F, Röllig C, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(17):2094–2102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI

Röllig C, Kramer M, Gabrecht M, Hänel M, Herbst R, Kaiser U, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(4):973–8. PubMed

Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691–1699. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI

Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–4335. doi: 10.1182/blood.V99.12.4326. PubMed DOI

Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML) Blood. 2006;107(10):4011–4020. doi: 10.1182/blood-2005-08-3167. PubMed DOI

Taube F, Georgi JA, Kramer M, Stasik S, Middeke JM, Röllig C, et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood. 2022;139(1):87–103. doi: 10.1182/blood.2020009680. PubMed DOI

Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, et al. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC

Gebhard C, Glatz D, Schwarzfischer L, Wimmer J, Stasik S, Nuetzel M, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33(1):26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI

Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8. PubMed

Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–1816. doi: 10.1200/JCO.1995.13.7.1800. PubMed DOI

Schwyzer R, Sherman GG, Cohn RJ, Poole JE, Willem P. Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8;21) Med Pediatr Oncol. 1998;31(3):144–149. doi: 10.1002/(SICI)1096-911X(199809)31:3<144::AID-MPO3>3.0.CO;2-B. PubMed DOI

Tallman MS, Hakimian D, Shaw JM, Lissner GS, Russell EJ, Variakojis D. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 1993;11(4):690–697. doi: 10.1200/JCO.1993.11.4.690. PubMed DOI

Sen F, Zhang XX, Prieto VG, Shea CR, Qumsiyeh MB. Increased incidence of trisomy 8 in acute myeloid leukemia with skin infiltration (leukemia cutis) Diagn Mol Pathol Am J Surg Pathol Part B. 2000;9(4):190–194. doi: 10.1097/00019606-200012000-00003. PubMed DOI

Shvartsbeyn M, Meehan SM, Gu P, Nierodzik ML, Perle MA. Trisomy 8 in myeloid leukemia cutis confirmed by fluorescence in situ hybridization analysis. J Cutan Pathol. 2012;39(11):1026–1029. doi: 10.1111/j.1600-0560.2012.01981.x. PubMed DOI

Zhang X-H, Zhang R, Li Y. Granulocytic sarcoma of abdomen in acute myeloid leukemia patient with inv(16) and t(6;17) abnormal chromosome: case report and review of literature. Leuk Res. 2010;34(7):958–961. doi: 10.1016/j.leukres.2010.01.009. PubMed DOI

Ovcharenko D, Stölzel F, Poitz D, Fierro F, Schaich M, Neubauer A, et al. miR-10a overexpression is associated with NPM1 mutations and MDM4 downregulation in intermediate-risk acute myeloid leukemia. Exp Hematol. 2011;39(10):1030–1042.e7. doi: 10.1016/j.exphem.2011.07.008. PubMed DOI

Falini B, Lenze D, Hasserjian R, Coupland S, Jaehne D, Soupir C, et al. Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia. 2007;21(7):1566–1570. doi: 10.1038/sj.leu.2404699. PubMed DOI

Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–3746. doi: 10.1182/blood-2005-05-2164. PubMed DOI

Ansari-Lari MA, Yang C-F, Tinawi-Aljundi R, Cooper L, Long P, Allan RH, et al. FLT3 mutations in myeloid sarcoma. Br J Haematol. 2004;126(6):785–791. doi: 10.1111/j.1365-2141.2004.05124.x. PubMed DOI

Li Z, Stölzel F, Onel K, Sukhanova M, Mirza MK, Yap KL, et al. Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia. 2015;29(10):2113–2116. doi: 10.1038/leu.2015.81. PubMed DOI PMC

Kashofer K, Gornicec M, Lind K, Caraffini V, Schauer S, Beham-Schmid C, et al. Detection of prognostically relevant mutations and translocations in myeloid sarcoma by next generation sequencing. Leuk Lymphoma. 2018;59(2):501. doi: 10.1080/10428194.2017.1339879. PubMed DOI PMC

Stasik S, Eckardt J-N, Kramer M, Röllig C, Krämer A, Scholl S, et al. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia. Blood Adv. 2021;5(17):3279–3289. doi: 10.1182/bloodadvances.2021004631. PubMed DOI PMC

Alfayez M, Issa GC, Patel KP, Wang F, Wang X, Short NJ, et al. The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia. 2021;35(3):691–700. doi: 10.1038/s41375-020-0920-z. PubMed DOI

Fobare S, Kohlschmidt J, Ozer HG, Mrózek K, Nicolet D, Mims AS, et al. Molecular associations, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia (Alliance). Blood Adv. 2021;bloodadvances.2021006242. PubMed PMC

Xu D, Qu C-K. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci J Virtual Libr. 2008;1(13):4925–4932. doi: 10.2741/3051. PubMed DOI PMC

Pandey R, Saxena M, Kapur R. Role of SHP2 in Hematopoiesis and Leukemogenesis. Curr Opin Hematol. 2017;24(4):307–313. doi: 10.1097/MOH.0000000000000345. PubMed DOI PMC

Nabinger SC, Li XJ, Ramdas B, He Y, Zhang X, Zeng L, et al. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia. 2013;27(2):398–408. doi: 10.1038/leu.2012.308. PubMed DOI PMC

Ivins Zito C, Kontaridis MI, Fornaro M, Feng G-S, Bennett AM. SHP-2 regulates the phosphatidylinositide 3’-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol. 2004;199(2):227–236. doi: 10.1002/jcp.10446. PubMed DOI

Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7(11):833–846. doi: 10.1038/nrm2039. PubMed DOI

Ganzel C, Manola J, Douer D, Rowe JM, Fernandez HF, Paietta EM, et al. Extramedullary disease in adult acute myeloid leukemia is common but lacks independent significance: analysis of patients in ECOG-ACRIN cancer research group trials, 1980–2008. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(29):3544–3553. doi: 10.1200/JCO.2016.67.5892. PubMed DOI PMC

Fernandez HF, Sun Z, Litzow MR, Luger SM, Paietta E, Racevskis J, et al. Extramedullary acute myeloid leukemia presenting in young adults demonstrates sensitivity to high-dose anthracycline: a subset analysis from ECOG-ACRIN 1900. Haematologica. 2019;104(4):e147. doi: 10.3324/haematol.2018.197277. PubMed DOI PMC

Agis H, Weltermann A, Fonatsch C, Haas O, Mitterbauer G, Müllauer L, et al. A comparative study on demographic, hematological, and cytogenetic findings and prognosis in acute myeloid leukemia with and without leukemia cutis. Ann Hematol. 2002;81(2):90–95. doi: 10.1007/s00277-001-0412-9. PubMed DOI

Ganzel C, Lee J-W, Fernandez HF, Paietta EM, Luger SM, Lazarus HM, et al. CNS involvement in AML at diagnosis is rare and does not affect response or survival: data from 11 ECOG-ACRIN trials. Blood Adv. 2021;5(22):4560–4568. doi: 10.1182/bloodadvances.2021004999. PubMed DOI PMC

Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC

Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev. 2020;44:100677. doi: 10.1016/j.blre.2020.100677. PubMed DOI

Zhang X, Zhang X, Li X, Lv Y, Zhu Y, Wang J, et al. The specific distribution pattern of IKZF1 mutation in acute myeloid leukemia. J Hematol OncolJ Hematol Oncol. 2020;13(1):140. doi: 10.1186/s13045-020-00972-5. PubMed DOI PMC

Bastidas Torres AN, Cats D, Mei H, Fanoni D, Gliozzo J, Corti L, et al. Whole-genome analysis uncovers recurrent IKZF1 inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer. 2020;59(5):295–308. doi: 10.1002/gcc.22831. PubMed DOI PMC

Cornelissen JJ, Gratwohl A, Schlenk RF, Sierra J, Bornhäuser M, Juliusson G, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579–590. doi: 10.1038/nrclinonc.2012.150. PubMed DOI

Shem-Tov N, Saraceni F, Danylesko I, Shouval R, Yerushalmi R, Nagler A, et al. Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2017;23(7):1087–1094. doi: 10.1016/j.bbmt.2017.03.023. PubMed DOI

Shan M, Lu Y, Yang M, Wang P, Lu S, Zhang L, et al. Characteristics and transplant outcome of myeloid sarcoma: a single-institute study. Int J Hematol. 2021;113(5):682–692. doi: 10.1007/s12185-021-03081-2. PubMed DOI

Sakaguchi H, Miyamura T, Tomizawa D, Taga T, Ishida H, Okamoto Y, et al. Effect of extramedullary disease on allogeneic hematopoietic cell transplantation for pediatric acute myeloid leukemia: a nationwide retrospective study. Bone Marrow Transplant. 2021;56(8):1859–1865. doi: 10.1038/s41409-021-01250-9. PubMed DOI

Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379(24):2330–2341. doi: 10.1056/NEJMoa1808777. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...