Molecular profiling and clinical implications of patients with acute myeloid leukemia and extramedullary manifestations
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35562747
PubMed Central
PMC9107142
DOI
10.1186/s13045-022-01267-7
PII: 10.1186/s13045-022-01267-7
Knihovny.cz E-zdroje
- Klíčová slova
- Acute myeloid leukemia, Chloroma, Extramedullary, Leukemia cutis, Myeloid sarcoma,
- MeSH
- akutní myeloidní leukemie * diagnóza genetika terapie MeSH
- lidé MeSH
- mutace MeSH
- nukleofosmin MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- tyrosinkinasa 3 podobná fms genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleofosmin MeSH
- tyrosinkinasa 3 podobná fms MeSH
BACKGROUND: Extramedullary manifestations (EM) are rare in acute myeloid leukemia (AML) and their impact on clinical outcomes is controversially discussed. METHODS: We retrospectively analyzed a large multi-center cohort of 1583 newly diagnosed AML patients, of whom 225 (14.21%) had EM. RESULTS: AML patients with EM presented with significantly higher counts of white blood cells (p < 0.0001), peripheral blood blasts (p < 0.0001), bone marrow blasts (p = 0.019), and LDH (p < 0.0001). Regarding molecular genetics, EM AML was associated with mutations of NPM1 (OR: 1.66, p < 0.001), FLT3-ITD (OR: 1.72, p < 0.001) and PTPN11 (OR: 2.46, p < 0.001). With regard to clinical outcomes, EM AML patients were less likely to achieve complete remissions (OR: 0.62, p = 0.004), and had a higher early death rate (OR: 2.23, p = 0.003). Multivariable analysis revealed EM as an independent risk factor for reduced overall survival (hazard ratio [HR]: 1.43, p < 0.001), however, for patients who received allogeneic hematopoietic cell transplantation (HCT) survival did not differ. For patients bearing EM AML, multivariable analysis unveiled mutated TP53 and IKZF1 as independent risk factors for reduced event-free (HR: 4.45, p < 0.001, and HR: 2.05, p = 0.044, respectively) and overall survival (HR: 2.48, p = 0.026, and HR: 2.63, p = 0.008, respectively). CONCLUSION: Our analysis represents one of the largest cohorts of EM AML and establishes key molecular markers linked to EM, providing new evidence that EM is associated with adverse risk in AML and may warrant allogeneic HCT in eligible patients with EM.
Department of Hematology Oncology and Immunology Philipps University Marburg Marburg Germany
Department of Hematology Oncology and Palliative Care Rems Murr Hospital Winnenden Winnenden Germany
Department of Hematology Oncology and Palliative Care Robert Bosch Hospital Stuttgart Germany
Department of Hematology University Hospital Essen Essen Germany
Department of Internal Medicine 2 Jena University Hospital Jena Germany
Department of Internal Medicine University Hospital Kiel Kiel Germany
Department of Medicine A University Hospital Münster Münster Germany
Department of Pathology University Hospital Carl Gustav Carus Dresden Germany
DKMS Clinical Trials Unit Dresden Germany
German Cancer Research Center and Medical Clinic 5 University Hospital Heidelberg Heidelberg Germany
German Consortium for Translational Cancer Research DKFZ Heidelberg Germany
Medical Care Center University Hospital Carl Gustav Carus Dresden Germany
Medical Clinic 1 Hematology and Celltherapy University Hospital Leipzig Leipzig Germany
Medical Clinic 2 St Bernward Hospital Hildesheim Germany
Medical Clinic 2 University Hospital Frankfurt Frankfurt Germany
Medical Clinic 3 Chemnitz Hospital AG Chemnitz Germany
Medical Clinic 3 St Marien Hospital Siegen Siegen Germany
Medical Clinic 5 University Hospital Erlangen Erlangen Germany
Medical Clinic and Policlinic 2 University Hospital Würzburg Würzburg Germany
Zobrazit více v PubMed
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Yilmaz AF, Saydam G, Sahin F, Baran Y. Granulocytic sarcoma: a systematic review. Am J Blood Res. 2013;3(4):265–270. PubMed PMC
King A. Case of chloroma. Mon J Med Sci. 1853;8(44):97.
Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118(14):3785–3793. doi: 10.1182/blood-2011-04-347229. PubMed DOI
Goyal G, Bartley AC, Patnaik MM, Litzow MR, Al-Kali A, Go RS. Clinical features and outcomes of extramedullary myeloid sarcoma in the United States: analysis using a national data set. Blood Cancer J. 2017;7(8):e592–e592. doi: 10.1038/bcj.2017.79. PubMed DOI PMC
Wiernik PH, Serpick AA. Granulocytic sarcoma (chloroma) Blood. 1970;35(3):361–369. doi: 10.1182/blood.V35.3.361.361. PubMed DOI
Liu PI, Ishimaru T, McGregor DH, Okada H, Steer A. Autopsy study of granulocytic sarcoma (chloroma) in patients with myelogenous leukemia, Hiroshima-Nagasaki 1949–1969. Cancer. 1973;31(4):948–955. doi: 10.1002/1097-0142(197304)31:4<948::AID-CNCR2820310428>3.0.CO;2-N. PubMed DOI
Avni B, Koren-Michowitz M. Myeloid sarcoma: current approach and therapeutic options. Ther Adv Hematol. 2011;2(5):309. doi: 10.1177/2040620711410774. PubMed DOI PMC
Stölzel F, Lüer T, Löck S, Parmentier S, Kuithan F, Kramer M, et al. The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the prospective PETAML trial. Haematologica. 2020;105(6):1552. doi: 10.3324/haematol.2019.223032. PubMed DOI PMC
Ullman DI, Dorn D, Jones JA, Fasciano D, Ping Z, Kanakis C, et al. Clinicopathological and molecular characteristics of extramedullary acute myeloid leukaemia. Histopathology. 2019;75(2):185–192. doi: 10.1111/his.13864. PubMed DOI
Solh M, Solomon S, Morris L, Holland K, Bashey A. Extramedullary acute myelogenous leukemia. Blood Rev. 2016;30(5):333–339. doi: 10.1016/j.blre.2016.04.001. PubMed DOI
Röllig C, Thiede C, Gramatzki M, Aulitzky W, Bodenstein H, Bornhäuser M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116(6):971–978. doi: 10.1182/blood-2010-01-267302. PubMed DOI
Schaich M, Parmentier S, Kramer M, Illmer T, Stölzel F, Röllig C, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(17):2094–2102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI
Röllig C, Kramer M, Gabrecht M, Hänel M, Herbst R, Kaiser U, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(4):973–8. PubMed
Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691–1699. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI
Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–4335. doi: 10.1182/blood.V99.12.4326. PubMed DOI
Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML) Blood. 2006;107(10):4011–4020. doi: 10.1182/blood-2005-08-3167. PubMed DOI
Taube F, Georgi JA, Kramer M, Stasik S, Middeke JM, Röllig C, et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood. 2022;139(1):87–103. doi: 10.1182/blood.2020009680. PubMed DOI
Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, et al. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC
Gebhard C, Glatz D, Schwarzfischer L, Wimmer J, Stasik S, Nuetzel M, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33(1):26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8. PubMed
Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–1816. doi: 10.1200/JCO.1995.13.7.1800. PubMed DOI
Schwyzer R, Sherman GG, Cohn RJ, Poole JE, Willem P. Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8;21) Med Pediatr Oncol. 1998;31(3):144–149. doi: 10.1002/(SICI)1096-911X(199809)31:3<144::AID-MPO3>3.0.CO;2-B. PubMed DOI
Tallman MS, Hakimian D, Shaw JM, Lissner GS, Russell EJ, Variakojis D. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 1993;11(4):690–697. doi: 10.1200/JCO.1993.11.4.690. PubMed DOI
Sen F, Zhang XX, Prieto VG, Shea CR, Qumsiyeh MB. Increased incidence of trisomy 8 in acute myeloid leukemia with skin infiltration (leukemia cutis) Diagn Mol Pathol Am J Surg Pathol Part B. 2000;9(4):190–194. doi: 10.1097/00019606-200012000-00003. PubMed DOI
Shvartsbeyn M, Meehan SM, Gu P, Nierodzik ML, Perle MA. Trisomy 8 in myeloid leukemia cutis confirmed by fluorescence in situ hybridization analysis. J Cutan Pathol. 2012;39(11):1026–1029. doi: 10.1111/j.1600-0560.2012.01981.x. PubMed DOI
Zhang X-H, Zhang R, Li Y. Granulocytic sarcoma of abdomen in acute myeloid leukemia patient with inv(16) and t(6;17) abnormal chromosome: case report and review of literature. Leuk Res. 2010;34(7):958–961. doi: 10.1016/j.leukres.2010.01.009. PubMed DOI
Ovcharenko D, Stölzel F, Poitz D, Fierro F, Schaich M, Neubauer A, et al. miR-10a overexpression is associated with NPM1 mutations and MDM4 downregulation in intermediate-risk acute myeloid leukemia. Exp Hematol. 2011;39(10):1030–1042.e7. doi: 10.1016/j.exphem.2011.07.008. PubMed DOI
Falini B, Lenze D, Hasserjian R, Coupland S, Jaehne D, Soupir C, et al. Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia. 2007;21(7):1566–1570. doi: 10.1038/sj.leu.2404699. PubMed DOI
Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–3746. doi: 10.1182/blood-2005-05-2164. PubMed DOI
Ansari-Lari MA, Yang C-F, Tinawi-Aljundi R, Cooper L, Long P, Allan RH, et al. FLT3 mutations in myeloid sarcoma. Br J Haematol. 2004;126(6):785–791. doi: 10.1111/j.1365-2141.2004.05124.x. PubMed DOI
Li Z, Stölzel F, Onel K, Sukhanova M, Mirza MK, Yap KL, et al. Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia. 2015;29(10):2113–2116. doi: 10.1038/leu.2015.81. PubMed DOI PMC
Kashofer K, Gornicec M, Lind K, Caraffini V, Schauer S, Beham-Schmid C, et al. Detection of prognostically relevant mutations and translocations in myeloid sarcoma by next generation sequencing. Leuk Lymphoma. 2018;59(2):501. doi: 10.1080/10428194.2017.1339879. PubMed DOI PMC
Stasik S, Eckardt J-N, Kramer M, Röllig C, Krämer A, Scholl S, et al. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia. Blood Adv. 2021;5(17):3279–3289. doi: 10.1182/bloodadvances.2021004631. PubMed DOI PMC
Alfayez M, Issa GC, Patel KP, Wang F, Wang X, Short NJ, et al. The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia. 2021;35(3):691–700. doi: 10.1038/s41375-020-0920-z. PubMed DOI
Fobare S, Kohlschmidt J, Ozer HG, Mrózek K, Nicolet D, Mims AS, et al. Molecular associations, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia (Alliance). Blood Adv. 2021;bloodadvances.2021006242. PubMed PMC
Xu D, Qu C-K. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci J Virtual Libr. 2008;1(13):4925–4932. doi: 10.2741/3051. PubMed DOI PMC
Pandey R, Saxena M, Kapur R. Role of SHP2 in Hematopoiesis and Leukemogenesis. Curr Opin Hematol. 2017;24(4):307–313. doi: 10.1097/MOH.0000000000000345. PubMed DOI PMC
Nabinger SC, Li XJ, Ramdas B, He Y, Zhang X, Zeng L, et al. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia. 2013;27(2):398–408. doi: 10.1038/leu.2012.308. PubMed DOI PMC
Ivins Zito C, Kontaridis MI, Fornaro M, Feng G-S, Bennett AM. SHP-2 regulates the phosphatidylinositide 3’-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol. 2004;199(2):227–236. doi: 10.1002/jcp.10446. PubMed DOI
Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7(11):833–846. doi: 10.1038/nrm2039. PubMed DOI
Ganzel C, Manola J, Douer D, Rowe JM, Fernandez HF, Paietta EM, et al. Extramedullary disease in adult acute myeloid leukemia is common but lacks independent significance: analysis of patients in ECOG-ACRIN cancer research group trials, 1980–2008. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(29):3544–3553. doi: 10.1200/JCO.2016.67.5892. PubMed DOI PMC
Fernandez HF, Sun Z, Litzow MR, Luger SM, Paietta E, Racevskis J, et al. Extramedullary acute myeloid leukemia presenting in young adults demonstrates sensitivity to high-dose anthracycline: a subset analysis from ECOG-ACRIN 1900. Haematologica. 2019;104(4):e147. doi: 10.3324/haematol.2018.197277. PubMed DOI PMC
Agis H, Weltermann A, Fonatsch C, Haas O, Mitterbauer G, Müllauer L, et al. A comparative study on demographic, hematological, and cytogenetic findings and prognosis in acute myeloid leukemia with and without leukemia cutis. Ann Hematol. 2002;81(2):90–95. doi: 10.1007/s00277-001-0412-9. PubMed DOI
Ganzel C, Lee J-W, Fernandez HF, Paietta EM, Luger SM, Lazarus HM, et al. CNS involvement in AML at diagnosis is rare and does not affect response or survival: data from 11 ECOG-ACRIN trials. Blood Adv. 2021;5(22):4560–4568. doi: 10.1182/bloodadvances.2021004999. PubMed DOI PMC
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev. 2020;44:100677. doi: 10.1016/j.blre.2020.100677. PubMed DOI
Zhang X, Zhang X, Li X, Lv Y, Zhu Y, Wang J, et al. The specific distribution pattern of IKZF1 mutation in acute myeloid leukemia. J Hematol OncolJ Hematol Oncol. 2020;13(1):140. doi: 10.1186/s13045-020-00972-5. PubMed DOI PMC
Bastidas Torres AN, Cats D, Mei H, Fanoni D, Gliozzo J, Corti L, et al. Whole-genome analysis uncovers recurrent IKZF1 inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer. 2020;59(5):295–308. doi: 10.1002/gcc.22831. PubMed DOI PMC
Cornelissen JJ, Gratwohl A, Schlenk RF, Sierra J, Bornhäuser M, Juliusson G, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579–590. doi: 10.1038/nrclinonc.2012.150. PubMed DOI
Shem-Tov N, Saraceni F, Danylesko I, Shouval R, Yerushalmi R, Nagler A, et al. Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2017;23(7):1087–1094. doi: 10.1016/j.bbmt.2017.03.023. PubMed DOI
Shan M, Lu Y, Yang M, Wang P, Lu S, Zhang L, et al. Characteristics and transplant outcome of myeloid sarcoma: a single-institute study. Int J Hematol. 2021;113(5):682–692. doi: 10.1007/s12185-021-03081-2. PubMed DOI
Sakaguchi H, Miyamura T, Tomizawa D, Taga T, Ishida H, Okamoto Y, et al. Effect of extramedullary disease on allogeneic hematopoietic cell transplantation for pediatric acute myeloid leukemia: a nationwide retrospective study. Bone Marrow Transplant. 2021;56(8):1859–1865. doi: 10.1038/s41409-021-01250-9. PubMed DOI
Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379(24):2330–2341. doi: 10.1056/NEJMoa1808777. PubMed DOI PMC