Circulating microRNAs in Cerebrospinal Fluid and Plasma: Sensitive Tool for Detection of Secondary CNS Involvement, Monitoring of Therapy and Prediction of CNS Relapse in Aggressive B-NHL Lymphomas
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35565434
PubMed Central
PMC9103209
DOI
10.3390/cancers14092305
PII: cancers14092305
Knihovny.cz E-zdroje
- Klíčová slova
- B-NHL, Burkitt, CNS, DLBCL, MCL, cerebrospinal fluid, lymphoma, microRNA, plasma, relapse,
- Publikační typ
- časopisecké články MeSH
Lymphoma with secondary central nervous system (CNS) involvement represents one of the most aggressive malignancies, with poor prognosis and high mortality. New diagnostic tools for its early detection, response evaluation, and CNS relapse prediction are needed. We analyzed circulating microRNAs in the cerebrospinal fluid (CSF) and plasma of 162 patients with aggressive B-cell non-Hodgkin's lymphomas (B-NHL) and compared their levels in CNS-involving lymphomas versus in systemic lymphomas, at diagnosis and during treatment and CNS relapse. We identified a set of five oncogenic microRNAs (miR-19a, miR-20a, miR-21, miR-92a, and miR-155) in CSF that detect, with high sensitivity, secondary CNS lymphoma involvement in aggressive B-NHL, including DLBCL, MCL, and Burkitt lymphoma. Their combination into an oncomiR index enables the separation of CNS lymphomas from systemic lymphomas or nonmalignant controls with high sensitivity and specificity, and high Receiver Operating Characteristics (DLBCL AUC = 0.96, MCL = 0.93, BL = 1.0). Longitudinal analysis showed that oncomiR levels reflect treatment efficacy and clinical outcomes, allowing their monitoring and prediction. In contrast to conventional methods, CSF oncomiRs enable detection of early and residual CNS involvement, as well as parenchymal involvement. These circulating oncomiRs increase 1-4 months before CNS relapse, allowing its early detection and improving the prediction of CNS relapse risk in DLBCL. Similar effects were detectable, to a lesser extent, in plasma.
1st Department of Medicine Charles University General Hospital 128 08 Prague Czech Republic
Biocev 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
Faculty of Mathematics and Physics Charles University 186 75 Prague Czech Republic
Zobrazit více v PubMed
Ferreri A.J., Assanelli A., Crocchiolo R., Ciceri F. Central nervous system dissemination in immunocompetent patients with aggressive lymphomas: Incidence, risk factors and therapeutic options. Hematol. Oncol. 2009;27:61–70. doi: 10.1002/hon.881. PubMed DOI
El-Galaly T.C., Cheah C.Y., Bendtsen M.D., Nowakowski G.S., Kansara R., Savage K.J., Connors J.M., Sehn L.H., Goldschmidt N., Shaulov A., et al. Treatment strategies, outcomes and prognostic factors in 291 patients with secondary CNS involvement by diffuse large B-cell lymphoma. Eur. J. Cancer. 2018;93:57–68. doi: 10.1016/j.ejca.2018.01.073. PubMed DOI PMC
Hollender A., Kvaloy S., Nome O., Skovlund E., Lote K., Holte H. Central nervous system involvement following diagnosis of non-Hodgkin’s lymphoma: A risk model. Ann. Oncol. 2002;13:1099–1107. doi: 10.1093/annonc/mdf175. PubMed DOI
Cheah C.Y., George A., Gine E., Chiappella A., Kluin-Nelemans H.C., Jurczak W., Krawczyk K., Mocikova H., Klener P., Salek D., et al. Central nervous system involvement in mantle cell lymphoma: Clinical features, prognostic factors and outcomes from the European Mantle Cell Lymphoma Network. Ann. Oncol. 2013;24:2119–2123. doi: 10.1093/annonc/mdt139. PubMed DOI
McMillan A. Central nervous system-directed preventative therapy in adults with lymphoma. Br. J. Haematol. 2005;131:13–21. doi: 10.1111/j.1365-2141.2005.05703.x. PubMed DOI
Scott B.J., Douglas V.C., Tihan T., Rubenstein J.L., Josephson S.A. A systematic approach to the diagnosis of suspected central nervous system lymphoma. JAMA Neurol. 2013;70:311–319. doi: 10.1001/jamaneurol.2013.606. PubMed DOI PMC
Deckert M., Engert A., Bruck W., Ferreri A.J., Finke J., Illerhaus G., Klapper W., Korfel A., Kuppers R., Maarouf M., et al. Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia. 2011;25:1797–1807. doi: 10.1038/leu.2011.169. PubMed DOI
Klanova M., Sehn L.H., Bence-Bruckler I., Cavallo F., Jin J., Martelli M., Stewart D., Vitolo U., Zaja F., Zhang Q., et al. Integration of cell of origin into the clinical CNS International Prognostic Index improves CNS relapse prediction in DLBCL. Blood. 2019;133:919–926. doi: 10.1182/blood-2018-07-862862. PubMed DOI PMC
Malikova H., Liscak R., Latnerova I., Guseynova K., Syrucek M., Pytlik R. Complications of MRI-guided stereotactic biopsy of brain lymphoma. Neuroendocrinol. Lett. 2014;35:613–618. PubMed
Schmitz N., Zeynalova S., Nickelsen M., Kansara R., Villa D., Sehn L.H., Glass B., Scott D.W., Gascoyne R.D., Connors J.M., et al. CNS International Prognostic Index: A Risk Model for CNS Relapse in Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP. J. Clin. Oncol. 2016;34:3150–3156. doi: 10.1200/JCO.2015.65.6520. PubMed DOI
Kanemasa Y., Shimoyama T., Sasaki Y., Tamura M., Sawada T., Omuro Y., Hishima T., Maeda Y. Central nervous system relapse in patients with diffuse large B cell lymphoma: Analysis of the risk factors and proposal of a new prognostic model. Ann. Hematol. 2016;95:1661–1669. doi: 10.1007/s00277-016-2744-5. PubMed DOI
Savage K.J., Slack G.W., Mottok A., Sehn L.H., Villa D., Kansara R., Kridel R., Steidl C., Ennishi D., Tan K.L., et al. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL. Blood. 2016;127:2182–2188. doi: 10.1182/blood-2015-10-676700. PubMed DOI
Cheah C.Y., Oki Y., Westin J.R., Turturro F. A clinician’s guide to double hit lymphomas. Br. J. Haematol. 2015;168:784–795. doi: 10.1111/bjh.13276. PubMed DOI
Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Volinia S., Galasso M., Costinean S., Tagliavini L., Gamberoni G., Drusco A., Marchesini J., Mascellani N., Sana M.E., Abu Jarour R., et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20:589–599. doi: 10.1101/gr.098046.109. PubMed DOI PMC
Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC
Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC
Lawrie C.H., Gal S., Dunlop H.M., Pushkaran B., Liggins A.P., Pulford K., Banham A.H., Pezzella F., Boultwood J., Wainscoat J.S., et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 2008;141:672–675. doi: 10.1111/j.1365-2141.2008.07077.x. PubMed DOI
Roth P., Keller A., Hoheisel J.D., Codo P., Bauer A.S., Backes C., Leidinger P., Meese E., Thiel E., Korfel A., et al. Differentially regulated miRNAs as prognostic biomarkers in the blood of primary CNS lymphoma patients. Eur. J. Cancer. 2015;51:382–390. doi: 10.1016/j.ejca.2014.10.028. PubMed DOI
Ahmadvand M., Eskandari M., Pashaiefar H., Yaghmaie M., Manoochehrabadi S., Khakpour G., Sheikhsaran F., Montazer Zohour M. Over expression of circulating miR-155 predicts prognosis in diffuse large B-cell lymphoma. Leuk. Res. 2018;70:45–48. doi: 10.1016/j.leukres.2018.05.006. PubMed DOI
Baraniskin A., Kuhnhenn J., Schlegel U., Chan A., Deckert M., Gold R., Maghnouj A., Zollner H., Reinacher-Schick A., Schmiegel W., et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–3146. doi: 10.1182/blood-2010-09-308684. PubMed DOI
Baraniskin A., Kuhnhenn J., Schlegel U., Schmiegel W., Hahn S., Schroers R. Micrornas in Cerebrospinal Fluid as Biomarker for Disease Course Monitoring in Primary Central Nervous System Lymphoma. J. Neuro-Oncol. 2012;109:239–244. doi: 10.1007/s11060-012-0908-2. PubMed DOI
Zajdel M., Rymkiewicz G., Sromek M., Cieslikowska M., Swoboda P., Kulinczak M., Goryca K., Bystydzienski Z., Blachnio K., Ostrowska B., et al. Tumor and Cerebrospinal Fluid microRNAs in Primary Central Nervous System Lymphomas. Cancers. 2019;11:1647. doi: 10.3390/cancers11111647. PubMed DOI PMC
Kopkova A., Sana J., Machackova T., Vecera M., Radova L., Trachtova K., Vybihal V., Smrcka M., Kazda T., Slaby O., et al. Cerebrospinal Fluid MicroRNA Signatures as Diagnostic Biomarkers in Brain Tumors. Cancers. 2019;11:1546. doi: 10.3390/cancers11101546. PubMed DOI PMC
Munoz-San Martin M., Reverter G., Robles-Cedeno R., Buxo M., Ortega F.J., Gomez I., Tomas-Roig J., Celarain N., Villar L.M., Perkal H., et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J. Neuroinflamm. 2019;16:220. doi: 10.1186/s12974-019-1590-5. PubMed DOI PMC
Yang Q., Pan W., Qian L. Identification of the miRNA-mRNA regulatory network in multiple sclerosis. Neurol. Res. 2017;39:142–151. doi: 10.1080/01616412.2016.1250857. PubMed DOI
Sochor M., Basova P., Pesta M., Dusilkova N., Bartos J., Burda P., Pospisil V., Stopka T. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer. 2014;14:448. doi: 10.1186/1471-2407-14-448. PubMed DOI PMC
Ota A., Tagawa H., Karnan S., Tsuzuki S., Karpas A., Kira S., Yoshida Y., Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–3095. doi: 10.1158/0008-5472.CAN-03-3773. PubMed DOI
He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–833. doi: 10.1038/nature03552. PubMed DOI PMC
Olive V., Bennett M.J., Walker J.C., Ma C., Jiang I., Cordon-Cardo C., Li Q.J., Lowe S.W., Hannon G.J., He L. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009;23:2839–2849. doi: 10.1101/gad.1861409. PubMed DOI PMC
Eis P.S., Tam W., Sun L., Chadburn A., Li Z., Gomez M.F., Lund E., Dahlberg J.E. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA. 2005;102:3627–3632. doi: 10.1073/pnas.0500613102. PubMed DOI PMC
Kluiver J., Poppema S., de Jong D., Blokzijl T., Harms G., Jacobs S., Kroesen B.J., van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 2005;207:243–249. doi: 10.1002/path.1825. PubMed DOI
Lawrie C.H., Soneji S., Marafioti T., Cooper C.D., Palazzo S., Paterson J.C., Cattan H., Enver T., Mager R., Boultwood J., et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer. 2007;121:1156–1161. doi: 10.1002/ijc.22800. PubMed DOI
Roehle A., Hoefig K.P., Repsilber D., Thorns C., Ziepert M., Wesche K.O., Thiere M., Loeffler M., Klapper W., Pfreundschuh M., et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br. J. Haematol. 2008;142:732–744. doi: 10.1111/j.1365-2141.2008.07237.x. PubMed DOI
Metzler M., Wilda M., Busch K., Viehmann S., Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 2004;39:167–169. doi: 10.1002/gcc.10316. PubMed DOI
Han B., Wang S., Zhao H. MicroRNA-21 and microRNA-155 promote the progression of Burkitt’s lymphoma by the PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 2020;13:89–98. PubMed PMC
Huskova H., Korecka K., Karban J., Vargova J., Vargova K., Dusilkova N., Trneny M., Stopka T. Oncogenic microRNA-155 and its target PU.1: An integrative gene expression study in six of the most prevalent lymphomas. Int. J. Hematol. 2015;102:441–450. doi: 10.1007/s12185-015-1847-4. PubMed DOI
Xiao C., Srinivasan L., Calado D.P., Patterson H.C., Zhang B., Wang J., Henderson J.M., Kutok J.L., Rajewsky K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 2008;9:405–414. doi: 10.1038/ni1575. PubMed DOI PMC
Sandhu S.K., Fassan M., Volinia S., Lovat F., Balatti V., Pekarsky Y., Croce C.M. B-cell malignancies in microRNA Emu-miR-17~92 transgenic mice. Proc. Natl. Acad. Sci. USA. 2013;110:18208–18213. doi: 10.1073/pnas.1315365110. PubMed DOI PMC
Pospisil V., Vargova K., Kokavec J., Rybarova J., Savvulidi F., Jonasova A., Necas E., Zavadil J., Laslo P., Stopka T. Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. The EMBO J. 2011;30:4450–4464. doi: 10.1038/emboj.2011.317. PubMed DOI PMC
Ghani S., Riemke P., Schonheit J., Lenze D., Stumm J., Hoogenkamp M., Lagendijk A., Heinz S., Bonifer C., Bakkers J., et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood. 2011;118:2275–2284. doi: 10.1182/blood-2011-02-335141. PubMed DOI PMC
Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., Mitchell P.S., Bennett C.F., Pogosova-Agadjanyan E.L., Stirewalt D.L., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108:5003–5008. doi: 10.1073/pnas.1019055108. PubMed DOI PMC
Outcome of patients with diffuse large B-cell lymphoma and testicular involvement - real world data