MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35567489
PubMed Central
PMC9342970
DOI
10.1093/plphys/kiac220
PII: 6585885
Knihovny.cz E-resources
- MeSH
- Arabidopsis * metabolism MeSH
- Cyclopentanes metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Mediator Complex metabolism MeSH
- Oxylipins metabolism MeSH
- Arabidopsis Proteins * metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Signal Transduction MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cyclopentanes MeSH
- jasmonic acid MeSH Browser
- Indoleacetic Acids MeSH
- Mediator Complex MeSH
- Oxylipins MeSH
- Arabidopsis Proteins * MeSH
Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.
Plant Mediator Lab National Institute of Plant Genome Research New Delhi 110067 India
Signalling Lab National Institute of Plant Genome Research New Delhi 110067 India
See more in PubMed
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78 PubMed PMC
Agrawal R, Jiří F, Thakur JK (2020) The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. J Exp Bot 72: 224–240 PubMed
Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, et al. (2014) Mediator, TATA-binding protein, and RNA polymerase ii contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem 289: 14981–14995 PubMed PMC
Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26: 717–729 PubMed
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinasc SI (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol 181: 1668–1682 PubMed PMC
Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delkera C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180: 757–766 PubMed PMC
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407–412 doi: 10.1038/nature05915 PubMed
Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48: 491–507 doi: 10.1016/j.molcel.2012.11.006 PubMed PMC
Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357–364 PubMed
Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5: 1–13 PubMed
Camut L, Regnault T, Sirlin-Josserand M, Sakvarelidze-Achard L, Carrera E, Zumsteg J, Heintz D, Leonhardt N, Lange MJP, Lange T, et al. (2019) Root-derived GA12 contributes to temperature-induced shoot growth in Arabidopsis. Nat Plants 5: 1216–1221 PubMed
Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70: 321–346 PubMed
Chehab EW, Yao C, Henderson Z, Kim S, Braam J (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22: 701–706 PubMed
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, et al. (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24: 2898–2916 PubMed PMC
Choi H, Oh E (2016) PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol Cells 39: 587–593 PubMed PMC
Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182: 175–187 PubMed
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743 PubMed
Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, van Noort J, Jaeger KE, Wigge PA (2017) Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol Plant 10: 1258–1273 PubMed PMC
Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22: R396–R397 PubMed
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiol 139: 5–17 PubMed PMC
Dai Vu L, Xu X, Gevaert K, de Smet I (2019) Developmental plasticity at high temperature. Plant Physiol 181: 399–411 PubMed PMC
Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3: 740. PubMed
Dombrecht B, Gang PX, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, et al. (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225–2245 PubMed PMC
Erwin JE, Heins RD, Karlsson MG (1989) Thermomorphogenesis in Lilium longiflorum. Am J Bot 76: 47–52
Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, et al. (2011) Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108: 20231–20235 PubMed PMC
Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development 137: 113–122 PubMed PMC
Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF (2012) Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci USA 109: 4674–4677 PubMed PMC
Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95: 7197–7202 PubMed PMC
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77–88 PubMed PMC
Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FCP, Werner M (2004) A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32: 5379–5391 PubMed PMC
Guo C, Che Z, Yue J, Xie P, Hao S, Xie W, Luo Z, Lin C (2020) ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci Adv 6: eaay4858. PubMed PMC
Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74: 626–637 PubMed PMC
Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19: 884–894 PubMed
Hou Y, Yan Y, Cao X (2022) Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. aBIOTECH 3: 12–24 PubMed PMC
Hsieh HL, Okamoto H (2014) Molecular interaction of jasmonate and phytochrome A signalling. J Exp Bot 65: 2847–2857 PubMed
Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162: 108–119 PubMed PMC
Huai J, Zhang X, Li J, Ma T, Zha P, Jing Y, Lin R (2018) SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol Plant 11: 928–942 PubMed
Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68: 1349–1359 PubMed
Huang J, Sun Y, Orduna AR, Jetter R, Li X (2019) The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. Plant J 98: 842–852 PubMed
Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21: 2441–2450 PubMed PMC
Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, Ludwig W, Sun H, James GV, Klecker M, et al. (2018) Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr Biol 28: 303–310.e3 PubMed
Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, Furutani M (2016) Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc Natl Acad Sci USA 113: 6562–6567 PubMed PMC
Jiang YW, Veschambre P, Erdjument-Bromage H, Tempst P, Conaway JW, Conaway RC, Kornberg RD (1998) Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc Natl Acad Sci USA 95: 8538–8543 PubMed PMC
Jiaqiang S, Yingxiu X, Songqing Y, Hongling J, Qian C, Fang L, Wenkun Z, Rong C, Xugang L, Tietz O, et al. (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21: 1495–1511 PubMed PMC
Jung C, Zhao P, Seo JS, Mitsuda N, Deng S, Chua NH (2015) PLANT U-BOX PROTEIN10 regulates MYC2 stability in arabidopsis. Plant Cell 27: 2016–2031 PubMed PMC
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, et al. (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354: 886–889 PubMed
Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6: 686–703 PubMed
Kidd BN, Kadoo NY, Dombrecht B, Tekeoǧlu M, Gardiner DM, Thatcher LF, Aitken EAB, Schenk PM, Manners JM, Kazan K (2011) Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in arabidopsis. Mol Plant-Microbe Interact 24: 733–748 PubMed
Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608 PubMed
Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30: 814–822 PubMed PMC
Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19: 408–413 PubMed
Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24: 25–37 PubMed
Kwak H, Lis JT (2013) Control of transcriptional elongation. Annu Rev Genet 47: 483–508 PubMed PMC
Lämke J, Brzezinka K, Altmann S, Bäurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35: 162–175 PubMed PMC
Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, Oh J, Guyomarc’H S, Pizot M, Farmer EE, et al. (2015) A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 6: 6043. PubMed PMC
Lee HJ, Jung JH, Cortés Llorca L, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5: 5473 doi: 10.1038/ncomms6473 PubMed
Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354: 897–900 PubMed
Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26: 56–78 PubMed PMC
Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18: 1815–1823 PubMed PMC
Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53: 312–323 PubMed
Maji S, Dahiya P, Waseem M, Dwivedi N, Bhat DS, Dar TH, Thakur JK (2019) Interaction map of Arabidopsis Mediator complex expounding its topology. Nucleic Acids Res 47: 3904–3920 PubMed PMC
Malik N, Agarwal P, Tyagi A (2017) Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 52: 475–502 PubMed
Malik N, Ranjan R, Parida SK, Agarwal P, Tyagi AK (2020) Mediator subunit OsMED14_1 plays an important role in rice development. Plant J 101: 1411–1429 PubMed
Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11: 761–772 PubMed PMC
Martínez C, Espinosa-Ruíz A, Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S (2018) PIF 4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 37: 1–15 PubMed PMC
Mashukova A, Forteza R, Shah VN, Salas PJ (2021) The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell 32: 690–702 PubMed PMC
Mathur S, Vyas S, Kapoor S, Tyagi AK (2011) The mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol 157: 1609–1627 PubMed PMC
Mittler G, Stühler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M (2003) A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J 22: 6494–6504 doi: 10.1093/emboj/cdg619 PubMed PMC
Nozawa K, Schneider TR, Cramer P (2017) Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545: 248–251 PubMed
Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14: 802–809 PubMed PMC
Park YJ, Lee HJ, Gil KE, Kim JY, Lee JH, Lee H, Cho HT, Vu LD, De Smet I, Park CM (2019) Developmental programming of thermonastic leaf movement. Plant Physiol 180: 1185–1197 PubMed PMC
Pasrija R, Thakur JK (2013) Tissue specific expression profile of mediator genes in Arabidopsis. Plant Signal Behav 8: e23983. PubMed PMC
Pasrija R, Thakur JK (2012) Analysis of differential expression of Mediator subunit genes in Arabidopsis. Plant Signal Behav 7: 1676–1686 PubMed PMC
Pontvianne F, Blevins T, Pikaard CS (2010) Arabidopsis histone lysine methyltransferases. Adv Bot Res 53: 1–22 PubMed PMC
Prasad BRV, Kumar SV, Nandi A, Chattopadhyay S (2012) Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development. BMC Plant Biol 12: 37. PubMed PMC
Proveniers MCG, Van Zanten M (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci 18: 59–64 PubMed
Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2: 15190. PubMed
Saleh A, Alvarez-Venegas R, Avramova Z (2008) An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 3: 1018–1025 PubMed
Samanta S, Thakur JK (2015) Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Front Plant Sci 6: 757. PubMed PMC
Sharma M, Banday ZZ, Shukla BN, Laxmi A (2019) Glucose-regulated hlp1 acts as a key molecule in governing thermomemory. Plant Physiol 180: 1081–1100 PubMed PMC
Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S (2014) Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol 15: R45. PubMed PMC
Sims RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28: 665–676 PubMed PMC
Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60: 589–601 PubMed
Sun J, Qi L, Li Y, Chu J, Li C (2012) Pif4-mediated activation of yucca8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 8: e1002594. PubMed PMC
Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson C V., Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645 PubMed
Tasset C, Singh Yadav A, Sureshkumar S, Singh R, van der Woude L, Nekrasov M, Tremethick D, van Zanten M, Balasubramanian S (2018) POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genet 14: e1007280. PubMed PMC
Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17: 260–270 PubMed
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665 PubMed
Tsutsui T, Fukasawa R, Shinmyouzu K, Nakagawa R, Tobe K, Tanaka A, Ohkuma Y (2013) Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 288: 20955–20965 PubMed PMC
Viscarra JA, Wang Y, Hong IH, Sul HS (2017) Transcriptional activation of lipogenesis by insulin requires phosphorylation of MED17 by CK2. Sci Signal 10: 1–12 PubMed PMC
Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7: 11677. PubMed PMC
Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H (2012) The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol 195: 217–230 PubMed
Van Der Woude LC, Perrella G, Snoek BL, Van Hoogdalem M, Novák O, Van Verk MC, Van Kooten HN, Zorn LE, Tonckens R, Dongus JA, et al. (2019) HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci USA 116: 25343–25354 PubMed PMC
Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094 PubMed
Xu X, Paik I, Zhu L, Huq E (2015) Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 20: 641–650 PubMed
Xu YH, Liao YC, Zhang Z, Liu J, Sun PW, Gao ZH, Sui C, Wei JH (2016) Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 6: 21843. PubMed PMC
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D (2021) The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Mol Plant 14: 1799–1813 PubMed
Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17: 1953–1966 PubMed PMC
Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, et al. (2009) The arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21: 2220–2236 PubMed PMC
Yang Y, Li L, Qu LJ (2016) Plant Mediator complex and its critical functions in transcription regulation. J Integr Plant Biol 58: 106–118 PubMed
Zhang XC, Millet YA, Cheng Z, Bush J, Ausubel FM (2015) Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes. Nat Plants 1: 15049. PubMed PMC
Zhang X, Bernatavichute Y V., Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10: R62. PubMed PMC
Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24: 4294–4309 PubMed PMC
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114: 9326–9331 PubMed PMC
Zhu JY, Oh E, Wang T, Wang ZY (2016) TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat Commun 7: 13692. PubMed PMC
Zhu X, Zhang Y, Bjornsdottir G, Liu Z, Quan A, Costanzo M, Dávila López M, Westholm JO, Ronne H, Boone C, et al. (2011) Histone modifications influence mediator interactions with chromatin. Nucleic Acids Res 39: 8342–8354 PubMed PMC
Zioutopoulou A, Patitaki E, Xu T, Kaiserli E (2021) The epigenetic mechanisms underlying thermomorphogenesis and heat stress responses in Arabidopsis. Plants 10: 2439. PubMed PMC