Medical nutrition therapy and clinical outcomes in critically ill adults: a European multinational, prospective observational cohort study (EuroPN)
Language English Country Great Britain, England Media electronic
Document type Journal Article, Observational Study
PubMed
35585554
PubMed Central
PMC9115983
DOI
10.1186/s13054-022-03997-z
PII: 10.1186/s13054-022-03997-z
Knihovny.cz E-resources
- Keywords
- Calorie, Critical illness, Mechanical ventilation, Nutrition, Protein, Survival, Weaning,
- MeSH
- Adult MeSH
- Energy Intake MeSH
- Intensive Care Units MeSH
- Cohort Studies MeSH
- Critical Illness * therapy MeSH
- Humans MeSH
- Parenteral Nutrition * MeSH
- Prospective Studies MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
BACKGROUND: Medical nutrition therapy may be associated with clinical outcomes in critically ill patients with prolonged intensive care unit (ICU) stay. We wanted to assess nutrition practices in European intensive care units (ICU) and their importance for clinical outcomes. METHODS: Prospective multinational cohort study in patients staying in ICU ≥ 5 days with outcome recorded until day 90. Macronutrient intake from enteral and parenteral nutrition and non-nutritional sources during the first 15 days after ICU admission was compared with targets recommended by ESPEN guidelines. We modeled associations between three categories of daily calorie and protein intake (low: < 10 kcal/kg, < 0.8 g/kg; moderate: 10-20 kcal/kg, 0.8-1.2 g/kg, high: > 20 kcal/kg; > 1.2 g/kg) and the time-varying hazard rates of 90-day mortality or successful weaning from invasive mechanical ventilation (IMV). RESULTS: A total of 1172 patients with median [Q1;Q3] APACHE II score of 18.5 [13.0;26.0] were included, and 24% died within 90 days. Median length of ICU stay was 10.0 [7.0;16.0] days, and 74% of patients could be weaned from invasive mechanical ventilation. Patients reached on average 83% [59;107] and 65% [41;91] of ESPEN calorie and protein recommended targets, respectively. Whereas specific reasons for ICU admission (especially respiratory diseases requiring IMV) were associated with higher intakes (estimate 2.43 [95% CI: 1.60;3.25] for calorie intake, 0.14 [0.09;0.20] for protein intake), a lack of nutrition on the preceding day was associated with lower calorie and protein intakes (- 2.74 [- 3.28; - 2.21] and - 0.12 [- 0.15; - 0.09], respectively). Compared to a lower intake, a daily moderate intake was associated with higher probability of successful weaning (for calories: maximum HR 4.59 [95% CI: 1.5;14.09] on day 12; for protein: maximum HR 2.60 [1.09;6.23] on day 12), and with a lower hazard of death (for calories only: minimum HR 0.15, [0.05;0.39] on day 19). There was no evidence that a high calorie or protein intake was associated with further outcome improvements. CONCLUSIONS: Calorie intake was mainly provided according to the targets recommended by the active ESPEN guideline, but protein intake was lower. In patients staying in ICU ≥ 5 days, early moderate daily calorie and protein intakes were associated with improved clinical outcomes. Trial registration NCT04143503 , registered on October 25, 2019.
Barts Health and Queen Mary University of London London England UK
CHRU La Cavale Blanche Brest France
Department of Anesthesiology and Intensive Care Medical University of Silesia Katowice Poland
Department of Intensive Care Medicine Fuenlabrada University Hospital Madrid Spain
Karolinska University Hospital Perioperative Medicine and Intensive Care Huddinge Stockholm Sweden
MH EK Honvedkorhaz Budapest Hungary
See more in PubMed
Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79. doi: 10.1016/j.clnu.2018.08.037. PubMed DOI
Singer P, Berger M, van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28:387–400. doi: 10.1016/j.clnu.2009.04.024. PubMed DOI
Lee Z-Y, Yap CSL, Hasan MS, Engkasan JP, Barakatun-Nisak MY, Day AG, et al. The effect of higher versus lower protein delivery in critically ill patients: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2021;25(1):1–15. doi: 10.1186/s13054-021-03693-4. PubMed DOI PMC
Heyland DK, Dhaliwal R, Wang M, Day AG. The prevalence of iatrogenic underfeeding in the nutritionally ‘at-risk’ critically ill patient: results of an international, multicenter, prospective study. Clin Nutr. 2015;34(4):659–666. doi: 10.1016/j.clnu.2014.07.008. PubMed DOI
Vallejo KP, Martínez CM, Adames AAM, Fuchs-Tarlovsky V, Nogales GCC, Paz RER, et al. Current clinical nutrition practices in critically ill patients in Latin America: a multinational observational study. Crit Care. 2017;21(1):1–11. doi: 10.1186/s13054-017-1805-z. PubMed DOI PMC
Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015;372(25):2398–2408. doi: 10.1056/NEJMoa1502826. PubMed DOI
Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016;20(1):1–8. doi: 10.1186/s13054-016-1538-4. PubMed DOI PMC
Bendavid I, Zusman O, Kagan I, Theilla M, Cohen J, Singer P. Early administration of protein in critically ill patients: a retrospective cohort study. Nutrients. 2019;11(1):106. doi: 10.3390/nu11010106. PubMed DOI PMC
Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601–609. doi: 10.1007/s00134-011-2146-z. PubMed DOI
Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. The Lancet. 2013;381(9864):385–393. doi: 10.1016/S0140-6736(12)61351-8. PubMed DOI
Weijs PJ, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. J Parenter Enter Nutr. 2012;36(1):60–68. doi: 10.1177/0148607111415109. PubMed DOI
Compher C, Chittams J, Sammarco T, Nicolo M, Heyland DK. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study. Crit Care Med. 2017;45(2):156–163. doi: 10.1097/CCM.0000000000002083. PubMed DOI
Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637–1647. doi: 10.1007/s00134-017-4880-3. PubMed DOI
Koekkoek WACK, van Setten CHC, Olthof LE, Kars JCNH, van Zanten ARH. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: the PROTINVENT retrospective study. Clin Nutr. 2019;38(2):883–890. doi: 10.1016/j.clnu.2018.02.012. PubMed DOI
Hiesmayr M, Csomos A, Dams K, Elke G, Hartl W, Huet O, et al. Protocol for a prospective cohort study on the use of clinical nutrition and assessment of long-term clinical and functional outcomes in critically ill adult patients. Clin Nutr ESPEN. 2021;43:104–110. doi: 10.1016/j.clnesp.2021.01.048. PubMed DOI
Tipping CJ, Bailey MJ, Bellomo R, Berney S, Buhr H, Denehy L, et al. The ICU mobility scale has construct and predictive validity and is responsive. A multicenter observational study. Ann Am Thorac Soc. 2016;13(6):887–893. doi: 10.1513/AnnalsATS.201510-717OC. PubMed DOI
Peterson CM, Thomas DM, Blackburn GL, Heymsfield SB. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr. 2016;103(5):1197–1203. doi: 10.3945/ajcn.115.121178. PubMed DOI PMC
Verreijen AM, Engberink MF, Houston DK, Brouwer IA, Cawthon PM, Newman AB, et al. Dietary protein intake is not associated with 5-y change in mid-thigh muscle cross-sectional area by computed tomography in older adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr. 2019;109(3):535–543. doi: 10.1093/ajcn/nqy341. PubMed DOI PMC
Brandi LS, Santini L, Bertolini R, Malacarne P, Casagli S, Baraglia AM. Energy expenditure and severity of injury and illness indices in multiple trauma patients. Crit Care Med. 1999;27(12):2684–2689. doi: 10.1097/00003246-199912000-00013. PubMed DOI
Choi EY, Park DA, Park J. Calorie intake of enteral nutrition and clinical outcomes in acutely critically ill patients: a meta-analysis of randomized controlled trials. J Parenter Enter Nutr. 2015;39(3):291–300. doi: 10.1177/0148607114544322. PubMed DOI
Tian F, Wang X, Gao X, Wan X, Wu C, Zhang L, et al. Effect of initial calorie intake via enteral nutrition in critical illness: a meta-analysis of randomised controlled trials. Crit Care. 2015;19(1):1–13. doi: 10.1186/s13054-014-0721-8. PubMed DOI PMC
Hartl WH, Bender A, Scheipl F, Kuppinger D, Day AG, Küchenhoff H. Calorie intake and short-term survival of critically ill patients. Clin Nutr. 2019;38(2):660–667. doi: 10.1016/j.clnu.2018.04.005. PubMed DOI
Hartl WH, Kopper P, Bender A, Scheipl F, Day AG, Elke G, et al. Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models. Crit Care. 2022;26(1):7. doi: 10.1186/s13054-021-03870-5. PubMed DOI PMC
Ridley EJ, Peake SL, Jarvis M, Deane AM, Lange K, Davies AR, et al. Nutrition therapy in Australia and New Zealand intensive care units: an international comparison study. J Parenter Enter Nutr. 2018;42(8):1349–1357. doi: 10.1002/jpen.1163. PubMed DOI
Preiser J-C, Arabi YM, Berger MM, Casaer M, McClave S, Montejo-González JC, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit Care. 2021;25(1):1–13. doi: 10.1186/s13054-021-03847-4. PubMed DOI PMC
Bendavid I, Singer P, Theilla M, Themessl-Huber M, Sulz I, Mouhieddine M, et al. NutritionDay ICU: a 7 year worldwide prevalence study of nutrition practice in intensive care. Clin Nutr. 2017;36(4):1122–1129. doi: 10.1016/j.clnu.2016.07.012. PubMed DOI
Ingels C, Langouche L, Dubois J, Derese I, Vander Perre S, Wouters PJ, et al. C-reactive protein rise in response to macronutrient deficit early in critical illness: sign of inflammation or mediator of infection prevention and recovery. Intensive Care Med. 2021;48:1–11. PubMed
Arabi YM, Casaer MP, Chapman M, Heyland DK, Ichai C, Marik PE, et al. The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med. 2017;43(9):1239–1256. doi: 10.1007/s00134-017-4711-6. PubMed DOI PMC
Rougier L, Preiser JC, Fadeur M, Verbrugge AM, Paquot N, Ledoux D, et al. Nutrition during critical care: an audit on actual energy and protein intakes. J Parenter Enter Nutr. 2021;45(5):951–960. doi: 10.1002/jpen.1962. PubMed DOI
Elke G, Hartl WH, Kreymann KG, Adolph M, Felbinger TW, Graf T, et al. Clinical nutrition in critical care medicine—guideline of the German Society for Nutritional Medicine (DGEM) Clin Nutr ESPEN. 2019;33:220–275. doi: 10.1016/j.clnesp.2019.05.002. PubMed DOI
Davies ML, Chapple L-AS, Chapman MJ, Moran JL, Peake SL. Protein delivery and clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care Resusc. 2017;19(2):117–127. PubMed
Arabi Y, Al-Dorzi H, Mehta S, Tamim H, Haddad S, Jones G, et al. Association of protein intake with the outcomes of critically ill patients: a post hoc analysis of the PermiT trial. Am J Clin Nutr. 2018;108(5):988–996. doi: 10.1093/ajcn/nqy189. PubMed DOI
Fetterplace K, Deane AM, Tierney A, Beach LJ, Knight LD, Presneill J, et al. Targeted full energy and protein delivery in critically ill patients: a pilot randomized controlled trial (FEED trial) J Parenter Enter Nutr. 2018;42(8):1252–1262. doi: 10.1002/jpen.1166. PubMed DOI
Ridley EJ, Davies AR, Parke R, Bailey M, McArthur C, Gillanders L, et al. Supplemental parenteral nutrition versus usual care in critically ill adults: a pilot randomized controlled study. Crit Care. 2018;22:1–11. doi: 10.1186/s13054-018-1939-7. PubMed DOI PMC
Dresen E, Weißbrich C, Fimmers R, Putensen C, Stehle P. Medical high-protein nutrition therapy and loss of muscle mass in adult ICU patients: a randomized controlled trial. Clin Nutr. 2021;40(4):1562–1570. doi: 10.1016/j.clnu.2021.02.021. PubMed DOI
ClinicalTrials.gov
NCT04143503