Secondary metabolites produced by Macrophomina phaseolina, a fungal root endophyte of Brugmansia aurea, using classical and epigenetic manipulation approach
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35622275
DOI
10.1007/s12223-022-00976-3
PII: 10.1007/s12223-022-00976-3
Knihovny.cz E-zdroje
- Klíčová slova
- Epigenetics, Filamentous fungi, HDAC inhibitors, OSMAC, Secondary metabolites,
- MeSH
- Ascomycota * metabolismus MeSH
- benzen metabolismus MeSH
- Brugmansia * MeSH
- butylhydroxytoluen metabolismus MeSH
- butyráty metabolismus MeSH
- endofyty chemie MeSH
- epigeneze genetická MeSH
- formamidy metabolismus MeSH
- furany metabolismus MeSH
- glukosa metabolismus MeSH
- kyselina valproová metabolismus MeSH
- propan metabolismus MeSH
- toluen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzen MeSH
- butylhydroxytoluen MeSH
- butyráty MeSH
- formamidy MeSH
- furany MeSH
- glukosa MeSH
- kyselina valproová MeSH
- propan MeSH
- toluen MeSH
Endophytic fungi are rich sources of structurally complex chemical scaffolds with interesting biological activities. However, their metabolome is still unknown, making them appealing for novel compound discovery. To maximize the number of secondary metabolites produced from a single microbial source, we used the "OSMAC (one strain-many compounds) approach." In potato dextrose medium, M. phaseolina produced phomeolic acid (1), ergosterol peroxide (2), and a volatile compound 1,4-benzene-diol. Incorporating an epigenetic modifier, sodium valproate, affected the metabolite profile of the fungus. It produced 3-acetyl-3-methyl dihydro-furan-2(3H)-one (3) and methyl-2-(methyl-thio)-butyrate (4), plus volatile chemicals: butylated hydroxy toluene (BHT), di-methyl-formamide, 3-amino-1-propanol, and 1,4-benzenediol, 2-amino-1-(O-methoxyphenyl) propane. The structure of compounds 1-4 was established with the help of spectroscopic data. This study revealed first-time compounds 1-4 in the fungus M. phaseolina using a classical and epigenetic manipulation approach.
Academy of Scientific and Innovative Research CSIR New Delhi 110025 India
Instrumentation Division CSIR Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
Zobrazit více v PubMed
Adpressa DA, Stalheim KJ, Proteau PJ et al (2017) Unexpected biotransformation of the HDAC inhibitor vorinostat yields aniline-containing fungal metabolites. ACS Chem Biol 12:1842–1847. https://doi.org/10.1021/acschembio.7b00268 PubMed DOI
Alves E, Lucas GC, Pozza EA et al (2013) Scanning electron microscopy for fungal sample examination. In: Gupta VK, Tuohy MG, Ayyachamy M et al (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, NY, USA, pp 133–150 DOI
Choi J-H, Suzuki T, Okumura H et al (2014) Endoplasmic reticulum stress suppressive compounds from the edible mushroom Mycoleptodonoides aitchisonii. J Nat Prod 77:1729–1733. https://doi.org/10.1021/np500075m PubMed DOI
de Souza TJ, SrA B, Apel MA (2017) A chemometrics approach to the investigation of the intraspecific variability of the volatile oil of Eupatorium tremulum from Southern Brazil. J Nat Prod 80:45–52. https://doi.org/10.1021/acs.jnatprod.6b00313 PubMed DOI
Du X, Song M, Rouseff R (2011) Identification of new strawberry sulfur volatiles and changes during maturation. J Agric Food Chem 59:1293–1300. https://doi.org/10.1021/jf104287b PubMed DOI
Dwibedi V, Kalia S, Saxena S (2019) Isolation and enhancement of resveratrol production in Xylaria psidii by exploring the phenomenon of epigenetics: using DNA methyltransferases and histone deacetylase as epigenetic modifiers. Mol Biol Rep 46:4123–4137. https://doi.org/10.1007/s11033-019-04862-z PubMed DOI
Félix C, Salvatore MM, DellaGreca M et al (2019) Secondary metabolites produced by grapevine strains of Lasiodiplodia theobromae grown at two different temperatures. Mycologia 111:466–476. https://doi.org/10.1080/00275514.2019.1600342 PubMed DOI
Gharbi I, Issaoui M, Gharbi SE et al (2017) Butylated hydroxytoluene (BHT) emitted by fungi naturally occurring in olives during their pre-processing storage for improving olive oil stability. Eur J Lipid Sci Technol 119:1600343. https://doi.org/10.1002/ejlt.201600343 DOI
González-Menéndez V, Pérez-Bonilla M, Pérez-Victoria I et al (2016) Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes. Molecules 21:234. https://doi.org/10.3390/molecules21020234 DOI PMC
Gupta P, Yadav DK, Siripurapu KB, Palit G et al (2007) Constituents of Ocimum sanctum with antistress activity. J Nat Prod 70:1410–1416. https://doi.org/10.1021/np0700164 PubMed DOI
Kitagawa I, Hayashi K, Kobayashi M (1989) Heterosigma-glycolipids I and II, two new galactolipids containing octadecatetraenoyl and eicosapentaenoyl residues, from a raphidophyte dinoflagellate Heterosigma sp. Chem Pharm Bull 37:849–851. https://doi.org/10.1248/cpb.37.849 DOI
Kokubo T, Taniguchi Y, Kanayama M et al (2011) Extract of the mushroom Mycoleptodonoides aitchisonii induces a series of anti-oxidative and phase II detoxifying enzymes through activation of the transcription factor Nrf2. Food Chem 129:92–99. https://doi.org/10.1016/j.foodchem.2011.04.031 DOI
Kudalkar P, Strobel G, Riyaz-Ul-Hassan S et al (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 1:319–325. https://doi.org/10.1007/S10267-011-0165-9 DOI
Magotra A, Kumar M, Kushwaha M et al (2017) Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express 7:43. https://doi.org/10.1186/s13568-017-0343-z PubMed DOI PMC
Martínez-Soto D, Ortiz-Castellanos L, Robledo-Briones M et al (2020) Molecular mechanisms involved in the multicellular growth of Ustilaginomycetes. Microorganisms 8:1072. https://doi.org/10.3390/microorganisms8071072 DOI PMC
Pan R, Bai X, Chen J, Zhang H, Wang H (2019) Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front. Microbiol. 10:294. https://doi.org/10.3389/fmicb.2019.00294
Pfannenstiel BT, Keller NP (2019) On top of biosynthetic gene clusters: how epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 37:107345. https://doi.org/10.1016/j.biotechadv.2019.02.001 PubMed DOI PMC
Poolchanuan P, Unagul P, Thongnest S et al (2020) An anticonvulsive drug, valproic acid (valproate), has effects on the biosynthesis of fatty acids and polyketides in microorganisms. Sci Rep 10:9300. https://doi.org/10.1038/s41598-020-66251-y PubMed DOI PMC
Sharma V, Singamaneni V, Sharma N et al (2018) Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorg Med Chem Lett 28:2217–2221. https://doi.org/10.1016/j.bmcl.2018.04.018 PubMed DOI
Singh G, Katoch A, Razak M et al (2017) Bioactive and biocontrol potential of endophytic fungi associated with Brugmansia aurea Lagerh. FEMS Microbiol Lett 364:fnx194. https://doi.org/10.1093/femsle/fnx194
Singh G, Singh J, Singamaneni V et al (2021) Serine-glycine-betaine, a novel dipeptide from an endophyte Macrophomina phaseolina: isolation, bioactivity and biosynthesis. J Appl Microbiol 131:756–767. https://doi.org/10.1111/jam.14995 PubMed DOI
Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682. https://doi.org/10.1177/1934578X1501001012 PubMed DOI PMC
Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003 PubMed DOI PMC
Suresh JI, Sona N (2021) Fungal endophytes, biodiversity and biopotential applications. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology, Academic Press 1:107–115. https://doi.org/10.1016/B978-0-12-821394-0.00005-6 DOI
Wei J, Chen F, Liu Y et al (2020) Comparative metabolomics revealed the potential antitumor characteristics of four endophytic fungi of Brassica rapa L. ACS Omega 5:5939–5950. https://doi.org/10.1021/acsomega.9b04258 PubMed DOI PMC
Yang X-L, Awakawa T, Wakimoto T, Abe I (2013) Induced biosyntheses of a novel butyrophenone and two aromatic polyketides in the plant pathogen Stagonospora nodorum. Nat Prod Bioprospecting 3:141–144. https://doi.org/10.1007/s13659-013-0055-2 DOI
Ye B, Wu Y, Zhai X et al (2020) Beneficial effects of endophytic fungi from the anoectochilus and ludisia species on the growth and secondary metabolism of anoectochilus roxburghii. ACS Omega 5:3487–3497. https://doi.org/10.1021/acsomega.9b03789 PubMed DOI PMC
Ying Y-M, Li L, Yu H-F et al (2020) Induced production of a new polyketide in Penicillium sp. HS-11 by chemical epigenetic manipulation. Nat Prod Res 35:1446–1451. https://doi.org/10.1080/14786419.2019.1709190 DOI
Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. https://doi.org/10.1016/j.micres.2009.11.009 PubMed DOI
Zheng CJ, Xu LL, Li YY et al (2013) Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Appl Microbiol Biotechnol 97:7617–7625. https://doi.org/10.1007/s00253-013-5015-6 PubMed DOI