Associations between Fat Mass and Fat Free Mass with Physical Fitness in Adolescent Girls: A 3-Year Longitudinal Study

. 2022 May 21 ; 11 (5) : . [epub] 20220521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35625511

The main purpose of the study was to examine the longitudinal associations between fat mass and fat free mass with health-related physical fitness. Two-hundred and forty 15-year old adolescent girls were measured at the baseline and after a period of 3 years (17 years). Health-related physical fitness included the following tests: (1) explosive power of the lower extremities (standing broad jump); (2) muscle endurance of the trunk (sit-ups in 60 s); (3) flexibility (sit-and-reach test); (4) muscle endurance of the lower extremities (squats in 60 s); (5) aerobic endurance (the 800 m run test); and (6) speed endurance (the 400 m running test). Fat mass and fat free mass were assessed using the bioelectrical impedance method. Longitudinal associations were analyzed with linear mixed model estimates. After adjusting for body mass index, fat mass was negatively associated with standing broad jump (β = −1.13, p < 0.001), sit-ups in 60 s (β = −0.27, p < 0.001), and squats in 60 s (β = −0.27, p < 0001), while positive associations with the 800 m running test (β = 0.02, p < 0.001) and the 400 m running test (β = 0.02, p < 0.001) were observed. On the other hand, fat free mass was positively associated with standing broad jump (β = 1.14, p < 0.001), sit-ups in 60 s (β = 0.28, p < 0.001), and squats in 60 s (β = 0.28, p < 0001), while the 800 m running test (β = −0.02, p < 0.001) and the 400 m running test (β = −0.02, p < 0.001) exhibited negative associations. This study shows that fat mass and fat free mass components are longitudinally, but oppositely associated with health-related physical fitness in adolescent girls.

Zobrazit více v PubMed

NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC

Garrido-Miguel M., Cavero-Redondo I., Álvarez-Bueno C., Rodríguez-Artalejo F., Moreno L.A., Ruiz J.R., Ahrens W., Martínez-Vizcaíno V. Prevalence and trends of overweight and obesity in European children from 1999 to 2016: A systematic review and meta-analysis. JAMA Pediatr. 2019;173:e192430. doi: 10.1001/jamapediatrics.2019.2430. PubMed DOI PMC

Gupta N., Goel K., Shah P., Misra A. Childhood obesity in developing countries: Epidemiology, determinants, and prevention. Endocr. Rev. 2012;33:48–70. doi: 10.1210/er.2010-0028. PubMed DOI

World Health Organization . Adolescent Obesity and Related Behaviours: Trends and Inequalities in the WHO European Region, 2002–2014: Observations from the Health Behavior in School-Aged Children (HBSC) WHO Collaborative Cross-National Study. World Health Organization; Geneva, Switzerland: 2017.

Musić Milanović S., Lang Morović M., Bukal D., Križan H., Buoncristiano M., Breda J. Regional and sociodemographic determinants of the prevalence of overweight and obesity in children aged 7-9 years in Croatia. Acta Clin. Croat. 2020;59:303–311. doi: 10.20471/acc.2020.59.02.14. PubMed DOI PMC

Reilly J.J., Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int. J. Obes. 2011;35:891–898. doi: 10.1038/ijo.2010.222. PubMed DOI

Lindberg L., Danielsson P., Persson M., Marcus C., Hagman E. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS Med. 2020;17:e1003078. doi: 10.1371/journal.pmed.1003078. PubMed DOI PMC

Gutin B., Basch C., Shea S., Contento I., DeLozier M., Rips J., Irigoyen M., Zybert P. Blood pressure, fitness, and fatness in 5- and 6-year-old children. JAMA. 1990;264:1123–1127. doi: 10.1001/jama.1990.03450090059025. PubMed DOI

Lee S.J., Arslanian S.A. Cardiorespiratory fitness and abdominal adiposity in youth. Eur. J. Clin. Nutr. 2006;61:561–565. doi: 10.1038/sj.ejcn.1602541. PubMed DOI

Stigman S., Rintala P., Kukkonen-Harjula K., Kujala U., Rinne M., Fogelholm M. Eight-year-old children with high cardiorespiratory fitness have lower overall and abdominal fatness. Int. J. Pediatr. Obes. 2009;4:98–105. doi: 10.1080/17477160802221101. PubMed DOI

Willig A.L., Hunter G.R., Casazza K., Heimburger D.C., Beasley T.M., Fernandez J.R. Body Fat and Racial Genetic Admixture Are Associated With Aerobic Fitness Levels in a Multiethnic Pediatric Population. Obesity. 2011;19:2222–2227. doi: 10.1038/oby.2011.109. PubMed DOI PMC

Zaqout M., Vyncke K., Moreno L.A., De Miguel-Etayo P., Lauria F., Molnar D., Lissner L., Hunsberger M., Veidebaum T., Tornaritis M., et al. Determinant factors of physical fitness in European children. Int. J. Public Heal. 2016;61:573–582. doi: 10.1007/s00038-016-0811-2. PubMed DOI

Artero E.G., España-Romero V., Ortega F.B., Jiménez-Pavón D., Ruiz J.R., Vicente-Rodríguez G., Bueno M., Marcos A., Gómez-Martínez S., Urzanqui A., et al. Health-related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. The AVENA study. Scand. J. Med. Sci. Sports. 2010;20:418–427. doi: 10.1111/j.1600-0838.2009.00959.x. PubMed DOI

Moliner-Urdiales D., Ruiz J.R., Vicente-Rodriguez G., Ortega F.B., Rey-Lopez J.P., España-Romero V., Casajús J.A., Molnar D., Widhalm K., Dallongeville J., et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: The HELENA study. Br. J. Sports Med. 2011;45:101–108. doi: 10.1136/bjsm.2009.062430. PubMed DOI

Ervin R.B., Fryar C.D., Wang C.-Y., Miller I.M., Ogden C.L. Strength and Body Weight in US Children and Adolescents. Pediatrics. 2014;134:e782–e789. doi: 10.1542/peds.2014-0794. PubMed DOI PMC

Talma H., Chinapaw M.J.M., Bakker B., HiraSing R.A., Terwee C.B., Altenburg T.M. Bioelectrical impedance analysis to estimate body composition in children and adolescents: A systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes. Rev. 2013;14:895–905. doi: 10.1111/obr.12061. PubMed DOI

Kyle U.G., Earthman C.P., Pichard C., Coss-Bu J.A. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015;69:1298–1305. doi: 10.1038/ejcn.2015.86. PubMed DOI

Farbo D.J., Rhea D.J. A pilot study examining body composition classification differences between body mass index and bioelectrical impedance analysis in children with high levels of physical activity. Front. Pediatr. 2021;9:724053. doi: 10.3389/fped.2021.724053. PubMed DOI PMC

Henriksson P., Cadenas-Sanchez C., Leppänen M.H., Delisle Nyström C., Ortega F.B., Pomeroy J., Ruiz J.R., Löf M. Associations of fat mass and fat-free mass with physical fitness in 4-year-old children: Results from the MINISTOP trial. Nutrients. 2016;8:473. doi: 10.3390/nu8080473. PubMed DOI PMC

Martinez-Tellez B., Sanchez-Delgado G., Cadenas-Sanchez C., Mora-Gonzalez J., Martín-Matillas M., Löf M., Ortega F.B., Ruiz J.R. Health-related physical fitness is associated with total and central body fat in preschool children aged 3 to 5 years. Pediatr. Obes. 2016;11:468–474. doi: 10.1111/ijpo.12088. PubMed DOI

Kasović M., Štefan L., Petrić V. Secular trends in health-related physical fitness among 11–14-year-old Croatian children and adolescents from 1999 to 2014. Sci. Rep. 2021;11:11039. doi: 10.1038/s41598-021-90745-y. PubMed DOI PMC

Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774. PubMed DOI

Boreham C., Robson P.J., Gallagher A.M., Cran G.W., Savage J.M., Murray L.J. Tracking of physical activity, fitness, body composition and diet from adolescence to young adulthood: The Young Hearts Project, Northern Ireland. Int. J. Behav. Nutr. Phys. Act. 2004;1:14. doi: 10.1186/1479-5868-1-14. PubMed DOI PMC

Andersen L.B., Hasselstrøm H., Grønfeldt V., Hansen S.E., Karsten F. The relationship between physical fitness and clustered risk and tracking of clustered risk from adolescence to young adulthood: Eight years follow-up in the Danish Youth and Sport Study. Int. J. Behav. Nutr. Phys. Act. 2004;1:6. doi: 10.1186/1479-5868-1-6. PubMed DOI PMC

Lefevre J., Philippaerts R.M., Delvaux K., Thomis M., Vanreusel B., Eynde B.V., Claessens A.L., Lysens R., Renson R., Beunen G. Daily physical activity and physical fitness from adolescence to adulthood: A longitudinal study. Am. J. Hum. Biol. 2000;12:487–497. doi: 10.1002/1520-6300(200007/08)12:4<487::AID-AJHB8>3.0.CO;2-W. PubMed DOI

World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI

McCarthy H.D., Cole T.J., Fry T., Jebb S.A., Prentice A.M. Body fat reference curves for children. Int. J. Obes. 2006;30:598–602. doi: 10.1038/sj.ijo.0803232. PubMed DOI

Štefan L., Paradžik P., Sporiš G. Sex and age correlations of reported and estimated physical fitness in adolescents. PLoS ONE. 2019;14:0219217. doi: 10.1371/journal.pone.0219217. PubMed DOI PMC

PCPFS (President’s Council on Physical Fitness and Sports) The President’s Challenge Physical Fitness Test: V-sit Reach. 2012. [(accessed on 9 March 2022)]. Available online: https://www.presidentschallenge.org/challenge/physical/activities/v-sit-reach.shtml.

Štefan L., Neljak B., Petrić V., Kasović M., Vespalec T. Normative data for musculoskeletal fitness in 13,217 children and adolescents: The Croatian Fitness (CROFIT) study. Res. Q. Exerc. Sport. 2021;2021:1–9. doi: 10.1080/02701367.2021.1873903. PubMed DOI

Lammers A.E., Hislop A.A., Flynn Y., Haworth S.G. The 6-minute walk test: Normal values for children of 4–11 years of age. Arch. Dis. Child. 2008;93:464–468. doi: 10.1136/adc.2007.123653. PubMed DOI

Cohen J. A power primer. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155. PubMed DOI

Kasović M., Oreški A., Vespalec T., Jenčíková K., Štefan L. Tracking of health-related physical fitness in adolescent girls: A 3-year follow-up study. BMC Pediatr. 2022;22:236. doi: 10.1186/s12887-022-03305-2. PubMed DOI PMC

Niederer I., Kriemler S., Zahner L., Bürgi F., Ebenegger V., Marques P., Puder J.J. BMI group-related differences in physical fitness and physical activity in preschool-age children: A cross-sectional analysis. Res. Q. Exerc. Sport. 2012;83:12–19. doi: 10.1080/02701367.2012.10599820. PubMed DOI

Reeves L., Broeder C.E., Kennedy-Honeycutt L., East C., Matney L. Relationship of fitness and gross motor skills for five- to six-year-old children. Percept. Mot. Skills. 1999;89:739–747. doi: 10.2466/pms.1999.89.3.739. PubMed DOI

Deforche B., Lefevre J., De Bourdeaudhuij I., Hills A.P., Duquet W., Bouckaert J. Physical fitness and physical activity in obese and nonobese Flemish youth. Obes. Res. 2003;11:434–441. doi: 10.1038/oby.2003.59. PubMed DOI

Francisco R., Matias C.N., Santos D.A., Campa F., Minderico C.S., Rocha P., Heymsfield S.B., Lukaski H., Sardinha L.B., Silva A.M. The predictive role of raw bioelectrical impedance parameters in water compartments and fluid distribution assessed by dilution techniques in athletes. Int. J. Environ. Res. Public Health. 2020;17:759. doi: 10.3390/ijerph17030759. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...