• This record comes from PubMed

NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals

. 2022 May 13 ; 22 (10) : . [epub] 20220513

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CGIAR Research Program on Grain Legumes and Dryland Cereals CGIAR
CGIAR Initiative-Crops to End Hunger CGIAR
Global Challenge Research Fund (GCRF)-funded project Transforming India's Green Revolution by Research and Empowerment for Sustainable food Supplies (TIGR2ESS) UK Research and Innovation

Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers are regularly used to quantify grain quality, these do not suit all end users, for example, stakeholders in decentralized agri-food chains that are typical in emerging economies. Therefore, we explored benchtop and portable NIR instruments, and the methods that might aid these particular end uses. For this purpose, we generated NIR spectra for 328 grain samples from multiple cereals (finger millet, foxtail millet, maize, pearl millet, and sorghum) with a standard benchtop NIR spectrometer (DS2500, FOSS) and a novel portable NIR-based instrument (HL-EVT5, Hone). We explored classical deterministic methods (via winISI, FOSS), novel machine learning (ML)-driven methods (via Hone Create, Hone), and a convolutional neural network (CNN)-based method for building the calibrations to predict grain protein out of the NIR spectra. All of the tested methods enabled us to build relevant calibrations out of both types of spectra (i.e., R2 ≥ 0.90, RMSE ≤ 0.91, RPD ≥ 3.08). Generally, the calibration methods integrating the ML techniques tended to enhance the prediction capacity of the model. We also documented that the prediction of grain protein content based on the NIR spectra generated using the novel portable instrument (HL-EVT5, Hone) was highly relevant for quantitative protein predictions (R2 = 0.91, RMSE = 0.97, RPD = 3.48). Thus, the presented findings lay the foundations for the expanded use of NIR spectroscopy in agricultural research, development, and trade.

See more in PubMed

Agelet L.E., Hurburgh C.R., Jr. A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 2010;40:246–260. doi: 10.1080/10408347.2010.515468. DOI

Workman J., Weyer L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy. 2nd ed. CRC Press; Boca Raton, FL, USA: 2012. DOI

Villamuelas M., Serrano E., Espunyes J., Fernández N., López-Olvera J.R., Garel M., Santos J., Parra-Aguado M.Á., Ramanzin M., Fernández-Aguilar X., et al. Predicting herbivore faecal nitrogen using a multispecies near-infrared reflectance spectroscopy calibration. PLoS ONE. 2017;12:e0176635. doi: 10.1371/journal.pone.0176635. PubMed DOI PMC

Rukundo I.R., Danao M.G.C., Mitchell R.B., Masterson S.D., Weller C.L. Comparing the use of portable and benchtop NIR spectrometers in predicting nutritional value of forage. Appl. Eng. Agric. 2021;37:171–181. doi: 10.13031/aea.14157. DOI

FOSS-DS2500 Flour Analyzer from FOSS. [(accessed on 7 January 2021)]. Available online: https://www.dksh.com/global-en/products/ins/foss-flour-analyzer-nirs-ds2500.

Bruker-Tango FT-NIR Spectrometer from Bruker. [(accessed on 7 January 2021)]. Available online: https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-nir-spectrometers/tango-ft-nir-spectrometer.html.

Perten-IM9520 Flour Analyzer from PerkinElmer. [(accessed on 7 January 2021)]. Available online: https://www.calibrecontrol.com/main-product-list/perten-im9520-flour-analyser.

Sorak D., Herberholz L., Iwascek S., Altinpinar S., Pfeifer F., Siesler H.W. New developments and applications of portable raman, mid-infrared, and near-infrared spectrometers. Appl. Spectrosc. Rev. 2012;47:83–115. doi: 10.1080/05704928.2011.625748. DOI

Sarikaş A., Başar M.D. An electronic portable device design to spectroscopically assess fruit quality. Turk. J. Electr. Eng. Comput. Sci. 2017;25:4063–4076. doi: 10.3906/elk-1610-12. DOI

Crocombe R.A. Portable Spectroscopy. Appl. Spectrosc. 2018;72:1701–1751. doi: 10.1177/0003702818809719. PubMed DOI

MicroNIR OnSite-W from VIAVI Solutions. [(accessed on 7 January 2021)]. Available online: https://www.viavisolutions.com/en-us/osp/products/micronir-onsite-w.

DLP NIRScanTM Nano EVM Spectrometer from Texas Instruments. [(accessed on 7 January 2021)]. Available online: https://www.ti.com/tool/DLPNIRNANOEVM.

MEMS Spectrometer from Fraunhofer. [(accessed on 7 January 2021)]. Available online: https://www.ipms.fraunhofer.de/en/Components-and-Systems/Components-and-Systems-Sensors/Optical-Sensors/MEMS-based-spectroscopy.html.

Hone Lab Red from Hone. [(accessed on 7 January 2021)]. Available online: https://www.honeag.com/hone-lab.

Osborne B.G. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons Ltd; New York, NY, USA: 2006. Near infrared spectroscopy in food analysis. DOI

Singh C.B., Paliwal J., Jayas D.S., White N.D. Near-infrared spectroscopy: Applications in the grain industry; Proceedings of the CSBE/SCGAB Annual Conference; Edmonton, Alberta. 16–19 July 2006.

dos Santos C.A.T., Lopo M., Páscoa R.N.M.J., Lopes J.A. A Review on the Applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013;67:215–1233. doi: 10.1366/13-07228. PubMed DOI

Williams P.C. Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chem. 1975;52:561–576.

Norris K.H., Barnes R.F., Moore J.E., Shenk J.S. Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 1976;43:889–897. doi: 10.2527/jas1976.434889x. DOI

Estienne F., Pasti L., Centner V., Walczak B., Despagne F., Rimbaud D.J., De Noord O.E., Massart D.L. A comparison of multivariate calibration techniques applied to experimental NIR data sets: Part II. Predictive ability under extrapolation conditions. Chemometr. Intell. Lab. Syst. 2001;58:195–211. doi: 10.1016/S0169-7439(01)00159-9. DOI

Esbensen K.H., Julius L.P. Representative sampling, data quality, validation—A necessary trinity in chemometrics. In: Brown S., Tauler R., Walczak R., editors. Comprehensive Chemometrics. Volume 4. Elsevier; Oxford, UK: 2009. pp. 1–20.

Agelet L.E., Hurburgh C.R., Jr. Limitations and current applications of near infrared spectroscopy for single seed analysis. Talanta. 2014;121:288–299. doi: 10.1016/j.talanta.2013.12.038. PubMed DOI

Chang H., Zhu L., Lou X., Meng X., Guo Y., Wang Z. A new local modelling approach based on predicted errors for near-infrared spectral analysis. J. Anal. Methods Chem. 2016;2016:5416506. doi: 10.1155/2016/5416506. PubMed DOI PMC

Cheewapramong P. Ph.D. Thesis. University of Nebraska-Lincoln; Lincoln, NE, USA: 2007. Use of Near-Infrared Spectroscopy for Qualitative and Quantitative Analyses of Grains and Cereal Products.

Downey G. NIR and chemometrics in the service of the food industry. NIR News. 2007;18:10–11. doi: 10.1255/nirn.1018. DOI

Chen J.Y., Miao Y., Sato S., Zhang H. Near infrared spectroscopy for determination of the protein composition of rice flour. Food Sci. Technol. Res. 2008;14:132–138. doi: 10.3136/fstr.14.132. DOI

Kahriman F., Egesel C.Ö. Development of a calibration model to estimate quality traits in wheat flour using NIR (Near Infrared Reflectance) spectroscopy. Res. J. Agric. Sci. 2011;43:392–400.

Bagchi T.B., Sharma S., Chattopadhyay K. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chem. 2016;191:21–27. doi: 10.1016/j.foodchem.2015.05.038. PubMed DOI

Lyu N., Chen J., Pan T., Yao L., Han Y., Yu J. Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn. Infrared Phys. Techn. 2016;76:648–654. doi: 10.1016/j.infrared.2016.01.022. DOI

Sampaio P.S., Soares A., Castanho A., Almeida A.S., Oliveira J., Brites C. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 2018;242:196–204. doi: 10.1016/j.foodchem.2017.09.058. PubMed DOI

Tomas E., Bayram I. Establishing near infrared spectroscopy (NIR) calibration for starch analysis in corn grain. Kocatepe Vet. J. 2018;12:7–14.

Chen J., Li M., Pan T., Pang L., Yao L., Zhang J. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019;219:179–185. doi: 10.1016/j.saa.2019.03.105. PubMed DOI

Kahriman F., Liland K.H. SelectWave: A graphical user interface for wavelength selection and spectral data analysis. Chemom. Intell. Lab. Syst. 2021;212:104275. doi: 10.1016/j.chemolab.2021.104275. DOI

Lee S., Choi H., Cha K., Kim M.-K., Kim J.-S., Youn C.H., Lee S.-H., Chung H. Random Forest as a non-parametric algorithm for near-infrared (NIR) spectroscopic discrimination for geographical origin of agricultural samples. Bull. Korean Chem. Soc. 2012;33:4267–4270. doi: 10.5012/bkcs.2012.33.12.4267. DOI

Kong W., Zhang C., Liu F., Nie P., He Y. Rice seed cultivar identifcation using near-infrared hyperspectral imaging and multivariate data analysis. Sensors. 2013;13:8916–8927. doi: 10.3390/s130708916. PubMed DOI PMC

Chen H., Tan C., Lin Z. Authenticity detection of black rice by near-infrared spectroscopy and support vector data description. Int. J. Anal. Chem. 2018;2018:8032831. doi: 10.1155/2018/8032831. PubMed DOI PMC

Cui C., Fearn T. Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration. Chemometr Intell. Lab. Syst. 2018;182:9–20. doi: 10.1016/j.chemolab.2018.07.008. DOI

Das B., Nair B., Reddy V.K., Venkatesh P. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Int. J. Biometeorol. 2018;62:1809–1822. doi: 10.1007/s00484-018-1583-6. PubMed DOI

Le T.H., Chen H., Babar M.A. Deep learning for source code modeling and generation: Models, applications, and challenges. ACM Comput. Surv. 2020;53:62–100. doi: 10.1145/3383458. DOI

Sampaio P.S., Castanho A., Almeida A.S., Oliveira J., Brites C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020;246:527–537. doi: 10.1007/s00217-019-03419-5. DOI

Kabir M.H., Guindo M.L., Chen R., Liu F. Geographic origin discrimination of millet using vis-NIR spectroscopy combined with machine learning techniques. Foods. 2021;11:2767. doi: 10.3390/foods10112767. PubMed DOI PMC

Kahriman F., Egesel C.Ö. Using near infrared (NIR) spectroscopy in the analysis of cereal products: The example of maize. In: Efe R., Zencirkiran M., Curebal İ., editors. Recent Researches in Science and Landscape Management. Cambridge Scholars Publishing; Newcastle, NSW, Australia: 2018. pp. 507–521.

Ejaz I., He S., Li W., Hu N., Tang C., Li S., Li M., Diallo B., Xie G., Yu K. Sorghum grains grading for food, feed, and fuel using NIR spectroscopy. Front. Plant Sci. 2021;12:720022. doi: 10.3389/fpls.2021.720022. PubMed DOI PMC

Osborne B.G., Mertens B., Thompson M., Fearn T. The authentication of Basmati rice using near infrared spectroscopy. J. Near Infrared Spectrosc. 1993;1:77–83. doi: 10.1255/jnirs.8. DOI

Wang H.L., Wan X.Y., Bi J.C., Wang J.K., Jiang L., Chen L.M., Zhai H.Q., Wan J.M. Quantitative analysis of fat content in rice by near-infrared spectroscopy technique. Cereal Chem. 2006;83:402–406. doi: 10.1094/CC-83-0402. DOI

Barnaby J.Y., Huggins T.D., Lee H., Mcclung A.M., Pinson S.R.M., Oh M., Bauchan G.R., Tarpley L., Lee K.J., Kim M.S., et al. Vis/NIR hyperspectral imaging production environment, and physicochemical grain properties in rice. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-65999-7. PubMed DOI PMC

Burestan F.N., Sayyah A.H., Taghinezhad E. Prediction of some quality properties of rice and its flour by near-infrared spectroscopy (NIRS) analysis. Food Sci. Nutr. 2020;9:1099–1105. doi: 10.1002/fsn3.2086. PubMed DOI PMC

Fazeli N., Amir B., Afkari H., Mahdi S. Prediction of amylose content, protein content, breakdown, and setback viscosity of Kadus rice and its flour by near-infrared spectroscopy (NIRS) analysis. J. Food Process. Preserv. 2020;45:e15069.

De Alencar Figueiredo L.F., Davrieux F., Fliedel G., Rami J.F., Chantereau J., Deu M., Courtois B., Mestres C. Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. J. Agric. Food Chem. 2006;54:8501–8509. doi: 10.1021/jf061054g. PubMed DOI

Alfieri M., Cabassi G., Habyarimana E., Quaranta F., Balconi C., Redaelli R. Discrimination and prediction of polyphenolic compounds and total antioxidant capacity in sorghum grains. JNIRS. 2019;27:46–53. doi: 10.1177/0967033518825351. DOI

Pojić M.M., Mastilović J.S. Near infrared spectroscopy—advanced analytical tool in wheat breeding, trade, and processing. Food Bioprocess Technol. 2013;6:330–352. doi: 10.1007/s11947-012-0917-3. DOI

Kahriman F., Egesel C.Ö. Comparison of spectral and molecular analyses for classification of long term stored wheat samples. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu. 2016;36:1266–1272. PubMed

Levasseur-Garcia C. Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (Corn, Wheat, and Barley) Toxins. 2018;10:38. doi: 10.3390/toxins10010038. PubMed DOI PMC

Baeten V., Pierna J.F., Vermeulen P., Lecler B., Minet O., Zio D., Dardenne P. Performance comparison of bench-top, hyperspectral imaging and pocket near infrared spectrometers: The example of protein quantification in wheat flour. In: Engelsen S.B., Sørensen K.M., van den Berg F., editors. Proceedings of the 18th International Conference on Near Infrared Spectroscopy; Copenhagen, Denmark. 11–15 June 2017; Chichester, UK: IM Publications Open; 2019. pp. 151–155.

Johnson J.B. An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. J. Stored Prod. Res. 2020;86:101558. doi: 10.1016/j.jspr.2019.101558. DOI

Egesel C.Ö., Kahriman F. Determination of quality parameters in maize grain by NIR reflectance spectroscopy. Tarim Bilim. Derg. 2012;18:31–42. doi: 10.1501/Tarimbil_0000001190. DOI

Egesel C.Ö., Kahriman F., Ekinci N., Kavdir İ., Büyükcan M.B. Analysis of fatty acids in kernel, flour, and oil samples of maize by NIR spectroscopy using conventional regression. Cereal Chem. 2016;93:487–492. doi: 10.1094/CCHEM-12-15-0247-R. DOI

Kahriman F., Onac I., Turk F., Öner F., Egesel C.Ö. Determination of carotenoid and tocopherol content in maize flour and oil samples using near-infrared spectroscopy. Spectrosc. Lett. 2019;52:473–481. doi: 10.1080/00387010.2019.1671872. DOI

Kahriman F., Onaç I., Oner F., Mert F., Egesel C.Ö. Analysis of secondary biochemical components in maize flour samples by NIR (Near İnfrared Reflectance) Spectroscopy. J. Food Meas. Charact. 2020;14:2320–2332. doi: 10.1007/s11694-020-00479-0. DOI

Serment M., Kahriman F. Ability of near infrared spectroscopy and chemometrics to measure the phytic acid content in maize flour. Spectrosc. Lett. 2021;54:520–527. doi: 10.1080/00387010.2021.1950189. DOI

Abeshu Y. Ph.D. Thesis. Addis Ababa University; Addis Ababa, Ethiopia: 2019. Developing Calibration Model for Prediction of Malt Barley and Teff Genotypes Quality Traits Using Near Infrared Spectroscopy (NIRS)

Abeshu Y. Development of NIRS re-calibration model for ethiopian barley (Hordeum vulgare) lines traits to determine their brewing potential. J. Agric. Food Inf. 2021;1:100238. doi: 10.1016/j.jafr.2021.100238. DOI

Albanell E., Martínez M., De Marchi M., Manuelian C.L. Prediction of bioactive compounds in barley by near-infrared reflectance spectroscopy (NIRS) J. Food Compos. Anal. 2021;97:103763. doi: 10.1016/j.jfca.2020.103763. DOI

Stubbs T.L., Kennedy A.C., Fortuna A.M. Using NIRS to predict fiber and nutrient content of dryland cereal cultivars. J. Agric. Food Chem. 2010;58:398–403. doi: 10.1021/jf9025844. PubMed DOI

Rosales A., Galicia L., Oviedo E., Islas C., Palacios-Rojas N. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. J. Agric. Food Chem. 2011;59:10781–10786. doi: 10.1021/jf201468x. PubMed DOI

Piaskowski J.L., Brown D., Campbell K.G. Near-infrared calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat. Agron. J. 2016;108:285–293. doi: 10.2134/agronj2015.0173. DOI

Norman H.C., Hulm E., Humphries A.W., Hughes S.J., Vercoe P.E. Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Anim. Prod. Sci. 2020;60:1111–1122. doi: 10.1071/AN19310. DOI

Zerihun M., Fox G., Nega A., Seyoum A., Minuye M., Jordan D., Taddese T., Assefa A. Near-Infrared Reflectance Spectroscopy (NIRS) for Tannin, Starch and Amylase Determination in Sorghum Breeding Programs. J. Food Nutr. Sci. 2020;7:45–50. doi: 10.15436/2377-0619.20.2716. DOI

Carreira E., Serrano J., Shahidian S., Nogales-Bueno J., Rato A.E. Real-time quantification of crude protein and neutral detergent fibre in pastures under montado ecosystem using the portable NIR spectrometer. Appl. Sci. 2021;11:10638. doi: 10.3390/app112210638. DOI

Smartfood-International Year of Millets. [(accessed on 8 February 2022)]. Available online: https://www.smartfood.org/international-year-of-millets-2023/millet.

Sustainable Development Goal 3. [(accessed on 8 February 2022)]. Available online: https://in.one.un.org/page/sustainable-development-goals/sdg-3-2/

Mainstreaming Millets. [(accessed on 8 February 2022)]; Available online: https://pib.gov.in/PressReleasePage.aspx?PRID=1783716.

Li X., Siddique K.H. Future smart food: Harnessing the potential of neglected and underutilized species for Zero Hunger. Matern. Child Nutr. 2020;16:13008. doi: 10.1111/mcn.13008. PubMed DOI PMC

McKevith B. Nutritional aspects of cereals. Nutr. Bull. 2004;29:111–142. doi: 10.1111/j.1467-3010.2004.00418.x. DOI

Girish C., Meena R.K., Mahima D., Mamta K. Nutritional properties of minor millets: Neglected cereals with potentials to combat malnutrition. Curr. Sci. 2014;107:1109–1111.

Diao X. Production and genetic improvement of minor cereals in China. Crop. J. 2017;5:103–114. doi: 10.1016/j.cj.2016.06.004. DOI

Dodevska M.S., Djordjevic B.I., Sobajic S.S., Miletic I.D., Djordjevic P.B., Dimitrijevic-Sreckovic V.S. Characterization of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem. 2013;141:1624–1629. doi: 10.1016/j.foodchem.2013.05.078. PubMed DOI

Belesova K., Gasparrini A., Sié A., Sauerborn R., Wilkinson P. Household cereal crop harvest and children’s nutritional status in rural Burkina Faso. Environ. Health. 2017;16:1. doi: 10.1186/s12940-017-0258-9. PubMed DOI PMC

Rankoana S.A. The use of indigenous knowledge in subsistence farming: Implications for sustainable agricultural production in dikgale community in Limpopo Province, South Africa. Towar. Sustain. Agric. Farming Pract. Water Use. 2017;63:63–72.

Yang Z., Han L., Li Q. Discriminant analysis of meat and bone meal content in ruminant feed based on NIRS. Trans. Chin. Soc. Agric. Eng. 2009;40:124–128.

García J., Cozzolino D. Use of near infrared reflectance (NIR) spectroscopy to predict chemical composition of forages in broad-based calibration models. Agric. Téc. 2006;66:41–47. doi: 10.4067/S0365-28072006000100005. DOI

Black J.L., Hughes R.J., Nielsen S.G., Tredrea A.M., Flinn P.C. Near infrared reflectance analysis of grains to estimate nutritional value for chickens; Proceedings of the 20th Australian Poultry Science Symposium; Sydney, NSW, Australia. 9–11 February 2009; Brownlow Hill, NSW, Australia: Poultry Research Foundation; 2009. pp. 31–34.

Tahir M., Shim M.Y., Ward N.E., Smith C., Foster E., Guney A.C., Pesti G.M. Phytate and other nutrient components of feed ingredients for poultry. Poult. Sci. 2012;91:928–935. doi: 10.3382/ps.2011-01893. PubMed DOI

Atalay H., Kahriman F., Alatürk F. Estimation of dry matter, crude protein and starch values in mixed feeds by near-infrared reflectance (NIR) J. İst. Vet. Sci. 2020;4:125–130. doi: 10.30704/http-www-jivs-net.786427. DOI

Atalay H., Kahrıman F. Estimating roughage quality with near infrared reflectance (NIR) spectroscopy and chemometric techniques. Kocatepe Vet. J. 2020;13:234–240. doi: 10.30607/kvj.724124. DOI

Kahriman F., Atalay H. Estimation of relative feed value, relative forage quality and net energy lactation values of some roughage samples by using near infrared reflectance spectroscopy. J. Ist. Vet. Sci. 2020;4:109–118. doi: 10.30704/http-www-jivs-net.786427. DOI

Cherney J.H., Digman M.F., Cherney D.J. Portable NIRS for forage evaluation. Comput. Electron. Agric. 2021;190:106469. doi: 10.1016/j.compag.2021.106469. DOI

Assadzadeh S., Walker C.K., McDonald L.S., Maharjan P., Panozzo J.F. Multi-task deep learning of near infrared spectra for improved grain quality trait predictions. J. Near Infrared Spectrosc. 2020;28:275–286. doi: 10.1177/0967033520939318. DOI

Lee Y.Y., Kim J.B., Lee S.Y., Lee H.S., Gwag J.G., Kim C.K., Lee Y.B. Application of near-infrared reflectance spectroscopy to rapid determination of seed fatty acids in foxtail millet (Setaria italica (L.) P. Beauv) germplasm. Korean J. Breed. Sci. 2010;42:448–454.

Lee Y.-Y., Kim J.-B., Lee H.-S., Jeon Y.-A., Lee S.-Y., Kim C.-K. Evaluation of millet (Panicum miliaceum subsp. miliaceum) germplasm for seed fatty acids using near-infrared reflectance spectroscopy. Korean J. Crop Sci. 2012;57:29–34. doi: 10.7740/kjcs.2012.57.1.029. DOI

Yang X.-S., Wang L.-L., Zhou X.-R., Shuang S.-M., Zhu Z.-H., Li N., Li Y., Liu F., Liu S.-C., Lu P., et al. Determination of protein, fat, starch, and amino acids in foxtail millet Setaria italica (L.) Beauv. by Fourier transform near-infrared reflectance spectroscopy. Food Sci. Biotechnol. 2013;22:1495–1500. doi: 10.1007/s10068-013-0243-1. DOI

Bhardwaj R., Yadav S., Suneja P. NIRS based food quality assessment approaches for cereals, oilseeds, pulses, fruits and vegetables; Proceedings of the 7th Indo-Global Summit and Expo on Food & Beverages; New Delhi, India. 8–10 October 2015.

Wheat Trading Standards in Australia. [(accessed on 8 February 2022)]. Available online: https://www.graintrade.org.au/commodity_standards.

Wheat quality and Markets in Queensland, Department of Agriculture and Fisheries, Queensland. [(accessed on 8 February 2022)]; Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/0006/53799/Wheat-FactSheet-Quality-Markets-Qld.pdf.

Huck C.W. New Trend in Instrumentation of NIR Spectroscopy—Miniaturization. In: Ozaki Y., Huck C., Tsuchikawa S., Engelsen S.B., editors. Near-Infrared Spectroscopy. Springer; Singapore: 2021. pp. 193–210. DOI

Genebank of ICRISAT. [(accessed on 22 December 2021)]. Available online: https://www.genebank.icrisat.org.

Upadhyaya H.D., Pundir R.P.S., Dwivedi S.L., Gowda C.L.L., Reddy V.G., Singh S. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci. 2009;49:1769–1780. doi: 10.2135/cropsci2009.01.0014. DOI

Jordan D.R., Mace E.S., Cruickshank A.W., Hunt C.H., Henzell R.G. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 2011;51:1444–1457. doi: 10.2135/cropsci2010.06.0326. DOI

Deshpande S., Rakshit S., Manasa K.G., Pandey S., Gupta R. The Sorghum Genome. Compendium of Plant Genomes. Springer; Berlin/Heidelberg, Germany: 2016. Genomic Approaches for Abiotic Stress Tolerance in Sorghum; pp. 169–187.

Kassahun B., Bidinger F.R., Hash C.T., Kuruvinashetti M.S. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica. 2010;172:351–362. doi: 10.1007/s10681-009-0108-0. DOI

Sehgal D., Skot L., Singh R., Srivastava R.K., Das S.P., Taunk J., Sharma P.C., Pal R., Raj B., Hash C.T., et al. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE. 2015;10:e0122165. doi: 10.1371/journal.pone.0122165. PubMed DOI PMC

ICAR . Directorate of Publications and Information on Agriculture. ICAR Publication; New Delhi, India: 2011. Handbook of Agriculture.

Association of Official Analytical Chemists (AOAC) International . Official Methods of Analysis. 17th ed. Association of Official Analytical Chemists (AOAC) International; Gaithersberg, MD, USA: 2000.

Samireddypalle A., Boukar O., Grings E., Fatokun C.A., Kodukula P., Devulapalli R., Okike I., Blümmel M. Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Front. Plant Sci. 2017;8:30. doi: 10.3389/fpls.2017.00030. PubMed DOI PMC

Jayawardana S.A.S., Samarasekera J.K.R.R., Hettiarachchi G.H.C.M., Gooneratne J., Mazumdar S.D., Banerjee R. Dietary fibers, starch fractions and nutritional composition of finger millet varieties cultivated in Sri Lanka. J. Food Compost. Anal. 2019;82:103249. doi: 10.1016/j.jfca.2019.103249. DOI

Hone Lab Video. [(accessed on 8 February 2022)]. Available online: https://www.youtube.com/watch?v=c7f_p3p-SVg.

Hone Create Platform. [(accessed on 8 February 2022)]. Available online: https://www.honecreate.com.

Williams P. Calibration development and evaluation methods B. Set-up and evaluation. NIR News. 2013;24:20–24. doi: 10.1255/nirn.1391. DOI

Galvao R., Araujo M., Jose G., Pontes M., Silva E., Saldanha T. A method for calibration and validation subset partitioning. Talanta. 2005;67:736–740. doi: 10.1016/j.talanta.2005.03.025. PubMed DOI

Kemps B.J., Saeys W., Mertens K., Darius P., De Baerdemaeker J.G., De Ketelaere B. The importance of choosing the right validation strategy in inverse modelling. JNIRS. 2010;18:231–237. doi: 10.1255/jnirs.882. DOI

Au J., Youngentob K.N., Foley W.J., Moore B.D., Fearn T. Sample selection, calibration and validation of models developed from a large dataset of near infrared spectra of tree leaves. JNIRS. 2020;28:186–203. doi: 10.1177/0967033520902536. DOI

Kamilaris A., Prenafeta-Boldú F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018;147:70–90. doi: 10.1016/j.compag.2018.02.016. DOI

Fandango A. Mastering TensorFlow 1. x: Advanced Machine Learning and Deep Learning Concepts Using TensorFlow 1. x and Keras. Packt Publishing Ltd.; Birmingham, UK: 2018.

Savitzky A., Golay M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639. doi: 10.1021/ac60214a047. DOI

Barnes R.J., Dhanoa M.S., Lister S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989;43:772–777. doi: 10.1366/0003702894202201. DOI

Hopkins D.M. Using data pretreatments effectively; Proceedings of the International Diffuse Reflectance Conference; Chambersburg, PA, USA. 3–8 August 2008.

Kingma D.P., Ba J. Adam: A method for stochastic optimization. arXiv. 20141412.6980

Zhang X., Lin T., Xu J., Luo X., Ying Y. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta. 2019;1058:48–57. doi: 10.1016/j.aca.2019.01.002. PubMed DOI

Williams P. The RPD statistic: A tutorial note. NIR News. 2014;25:22–26. doi: 10.1255/nirn.1419. DOI

Williams P., Dardenne P., Flinn P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017;25:85–90. doi: 10.1177/0967033517702395. DOI

Williams P., Manley M., Antoniczyn J. Near-InfraRed Technoloy-Getting the Best Out of Light. Sun Press Imprint; Stellenbosch, South Africa: 2019. p. 301.

Kumar A., Tomer V., Kaur A., Kumar V., Gupta K. Millets: A solution to agrarian and nutritional challenges. Agric. Food Secur. 2018;7:31. doi: 10.1186/s40066-018-0183-3. DOI

Cozzolino D. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res. Int. 2014;60:262–265. doi: 10.1016/j.foodres.2013.08.034. DOI

Jordan M.I., Mitchell T.M. Machine learning: Trends, perspectives, and prospects. Science. 2015;349:255–260. doi: 10.1126/science.aaa8415. PubMed DOI

Huang Z., Sha S., Rong Z., Chen J., He Q., Khan D.M., Zhu S. Feasibility study of near infrared spectroscopy with variable selection for non-destructive determination of quality parameters in shell-intact cottonseed. Ind. Crops Prod. 2013;43:654–660. doi: 10.1016/j.indcrop.2012.08.015. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...