Cordycepin production by a novel endophytic fungus Irpex lacteus CHG05 isolated from Cordyceps hawkesii Gray
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35678982
DOI
10.1007/s12223-022-00981-6
PII: 10.1007/s12223-022-00981-6
Knihovny.cz E-resources
- Keywords
- Cordycepin, Cordyceps hawkesii Gray, Endophytic fungus, Irpex lacteus,
- MeSH
- Cordyceps * MeSH
- Deoxyadenosines MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- cordycepin MeSH Browser
- Deoxyadenosines MeSH
Cordycepin is an essential nucleoside antibiotic with a broad spectrum of physiological functions, which is currently produced by the fermentation of Cordyceps militaris. Even though numerous efforts were made to enhance cordycepin production, the cordycepin yield is still limited. High-cordycepin-yielding strains are still a prerequisite for industrial cordycepin production in large amounts. Screening high-cordycepin-yielding strains from other sources may break new grounds for cordycepin. In this study, Cordyceps hawkesii Gray, with high homology to C. militaris, was selected as the source to screen the cordycepin manufacturing endophytic fungi. Four isolates capable of cordycepin production were successfully obtained among all isolated endophytic fungi. One of the four with better cordycepin yield was identified as Irpex lacteus CHG05, which belongs to the Phlebia species. The response surface methodology was applied to optimize the culture conditions for cordycepin fermentation. 162.05 mg/L of cordycepin with a 53.1% improvement was achieved compared to the original conditions. This study indicates that the endophytic fungi from C. hawkesii Gray could produce cordycepin and served as the first report for cordycepin by the white-rot fungus of I. lacteus. Even though the yield is low compared to C. militaris, this strain provided another choice for enhanced cordycepin in the future.
See more in PubMed
Ancheeva E, Daletos G, Proksch P (2020) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27:1836–1854. https://doi.org/10.2174/0929867326666190916144709 PubMed DOI
Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M, Hadi S (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic Cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules 25:2735. https://doi.org/10.3390/molecules25122735 DOI PMC
Chamyuang S, Owatworakit A, Honda Y (2019) New insights into cordycepin production in Cordyceps militaris and applications. Ann Transl Med 7: S78. https://doi.org/10.21037/atm.2019.04.12
Cunningham KG, Manson W, Spring FS, Hutchinson, SA (1950) Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166: 949. https://doi.org/10.1038/166949a0
Kang C, Wen TC, Kang JC, Meng ZB, Li GR, Hyde KD (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. The Scientific World J 2014:510627. https://doi.org/10.1155/2014/510627 DOI
Kang N, Lee HH, Park I, Seo YS (2017) Development of high cordycepin-producing Cordyceps militaris Strains. Mycobiology 45:31–38. https://doi.org/10.5941/MYCO.2017.45.1.31 PubMed DOI PMC
Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI (2021) Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris-a review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi (basel) 7:986. https://doi.org/10.3390/jof7110986 DOI
Khan MA, Tania M (2020) Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr Med Chem 27:983–996. https://doi.org/10.2174/0929867325666181001105749 PubMed DOI
Kim IW, Lee HB, Sim SH, Yang EI, Kim YS (2017) Bioactive compounds and antioxidant activities of sprout soybean fermented with Irpex lacteus mycelia. Food Sci Biotechnol 26:1563–1570. https://doi.org/10.1007/s10068-017-0231-y PubMed DOI PMC
Kluge J, Terfehr D, Kück U (2018) Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol 102:6357–6372. https://doi.org/10.1007/s00253-018-9115-1 PubMed DOI PMC
Kuhad RC, Kapoor RK, Lal R (2004) Improving the yield and quality of DNA isolated from white-rot fungi. Folia Microbiol (praha) 49:112–116. https://doi.org/10.1007/BF02931383 DOI
Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 103:1681–1691. https://doi.org/10.1007/s00253-019-09623-3 PubMed DOI
Lee SK, Lee JH, Kim HR, Chun Y, Lee JH, Yoo HY, Park C, Kim SW (2019) Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 9:461. https://doi.org/10.3390/biom9090461 DOI PMC
Lin LT, Lai YJ, Wu SC, Hsu WH, Tai CJ (2018) Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. J Food Drug Anal 26:135–144. https://doi.org/10.1016/j.jfda.2016.11.021 PubMed DOI
Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179:633–649. https://doi.org/10.1007/s12010-016-2020-0 PubMed DOI
Lou H, Ye Z, Yun F, Lin J, Guo L, Chen B, Mu Z (2018) Targeted gene deletion in Cordyceps militaris using the split-marker approach. Mol Biotechnol 60:380–385. https://doi.org/10.1007/s12033-018-0080-9 PubMed DOI
Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Progr 20:1408–1413. https://doi.org/10.1021/bp049765r DOI
Meng C, Han Q, Wang X, Liu X, Fan X, Liu R, Wang Q, Wang C (2019) Determination and quantitative comparison of nucleosides in two Cordyceps by HPLC-ESI-MS-MS. J Chromatogr Sci 57:426–433. https://doi.org/10.1093/chromsci/bmz012 PubMed DOI
Novotný C, Cajthaml T, Svobodová K, Susla M, Sasek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential–review. Folia Microbiol (praha) 54:375–390. https://doi.org/10.1007/s12223-009-0053-2 DOI
Oh J, Yoon DH, Shrestha B, Choi HK, Sung GH (2019) Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 57:54–63. https://doi.org/10.1007/s12275-019-8486-z PubMed DOI
Qin P, Li X, Yang H, Wang ZY, Lu D (2019) Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 24:2231. https://doi.org/10.3390/molecules24122231 DOI PMC
Ramakrishna N, Lacey J, Smith JE (1991) Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. Int J Food Microbiol 13:47–54. https://doi.org/10.1016/0168-1605(91)90135-c PubMed DOI
Raman A, Wheatley W, Popay A (2012) Endophytic fungus-vascular plant-insect interactions. Environ Entomol 41:433–447. https://doi.org/10.1603/EN11317 PubMed DOI
Sadahiro Y, Kato H, Williams RM, Tsukamoto S (2020) Irpexine, an isoindolinone alkaloid produced by coculture of endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae. J Nat Prod 83:1368–1373. https://doi.org/10.1021/acs.jnatprod.0c00047 PubMed DOI
Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 63:e3064. https://doi.org/10.3791/3064
Sun CT, Wang JP, Shu Y, Cai XY, Hu JT, Zhang SQ, Cai L, Ding ZT (2020) A new tremulane sesquiterpene from Irpex lacteus by solid-state fermentation Nat Prod Res 1–6 https://doi.org/10.1080/14786419.2020.1806272
Shamly V, Kali A, Srirangaraj S, Umadevi S (2014) Comparison of microscopic morphology of fungi using lactophenol cotton blue (LPCB), iodine glycerol and congo red formaldehyde staining. J Clin Diagn Res 8: Dl01–2. https://doi.org/10.7860/JCDR/2014/8521.4535
Tang Y, Zhao ZZ, Feng T, Li ZH, Chen HP, Liu JK (2019) Triterpenes with unusual modifications from the fruiting bodies of the medicinal fungus Irpex lacteus. Phytochemistry 162:21–28. https://doi.org/10.1016/j.phytochem.2019.02.017 PubMed DOI
Wang M, Du JX, Hui-Xiang Y, Dai Q, Liu YP, He J, Wang Y, Li ZH, Feng T, Liu JK (2020) Sesquiterpenoids from cultures of the basidiomycetes Irpex lacteus. J Nat Prod 83:1524–1531. https://doi.org/10.1021/acs.jnatprod.9b01177 PubMed DOI
Wongsa B, Raethong N, Chumnanpuen P, Wong-Ekkabut J, Laoteng K, Vongsangnak W (2020) Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis. Genomics 112:629–636. https://doi.org/10.1016/j.ygeno.2019.04.015 PubMed DOI
Wu FC, Chen YL, Chang SM, Shih IL (2013) Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. Int J Med Mushrooms 15:393–405. https://doi.org/10.1615/intjmedmushr.v15.i4.70 PubMed DOI
Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24(1479–1489):e4. https://doi.org/10.1016/j.chembiol.2017.09.001 DOI
Yin HY, Yang XQ, Wang DL, Zhao TD, Wang CF, Yang YB, Ding ZT (2021) Antifeedant and antiphytopathogenic metabolites from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. Fitoterapia 148:104781. https://doi.org/10.1016/j.fitote.2020.104781 PubMed DOI
Zhang C, Li M, Li SJ, Chen LM, Wang HX, Xie S, Liu ZR, Hu JP (2016) Elementary studies on artificial cultivation of Cordyceps hawkesii. Jiangxi Science 34:576–578. (In Chinese). https://doi.org/10.13990/j.issn1001-3679.2016.05.003
Zhang H, Deng L, Zhang Z, Guan Y, Li B, Yang J, Fan H, Yang G, Chen X, Zhang J, Xin X, Vriesekoop F (2020) Enhanced Cordycepin Production in Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Mutated by a Multifunctional Plasma Mutagenesis System. Int J Med Mushrooms 22(12):1147–1159. https://doi.org/10.1615/IntJMedMushrooms.2020037153
Zhou QY, Yang XQ, Zhang ZX, Wang BY, Hu M, Yang YB, Zhou H, Ding ZT (2018) New azaphilones and tremulane sesquiterpene from endophytic Nigrospora oryzae cocultured with Irpex lacteus. Fitoterapia 130:26–30. https://doi.org/10.1016/j.fitote.2018.07.018 PubMed DOI