40S hnRNP particles are a novel class of nuclear biomolecular condensates
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35687109
PubMed Central
PMC9226511
DOI
10.1093/nar/gkac457
PII: 6605309
Knihovny.cz E-zdroje
- MeSH
- biomolekulární kondenzáty * MeSH
- buněčné jádro metabolismus MeSH
- heterogenní jaderné ribonukleoproteiny * genetika metabolismus MeSH
- RNA metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterogenní jaderné ribonukleoproteiny * MeSH
- RNA MeSH
Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.
Zobrazit více v PubMed
Alberti S., Hyman A.A.. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021; 22:196–213. PubMed
Sabari B.R., Dall’Agnese A., Young R.A.. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 2020; 45:961–977. PubMed PMC
Lafontaine D.L.J., Riback J.A., Bascetin R., Brangwynne C.P.. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 2021; 22:165–182. PubMed
Machyna M., Heyn P., Neugebauer K.M.. Cajal bodies: where form meets function. Wiley Interdiscip. Rev. RNA. 2013; 4:17–34. PubMed
Fox A.H., Nakagawa S., Hirose T., Bond C.S.. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem. Sci. 2018; 43:124–135. PubMed
Ilik I.A., Aktas T.. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. 2021; 10.1111/febs.16117. PubMed DOI
Razin S.V., Gavrilov A.A.. The role of liquid–liquid phase separation in the compartmentalization of cell nucleus and spatial genome organization. Biochemistry (Mosc). 2020; 85:643–650. PubMed
Tauber D., Tauber G., Parker R.. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 2020; 45:764–778. PubMed PMC
Molliex A., Temirov J., Lee J., Coughlin M., Kanagaraj A.P., Kim H.J., Mittag T., Taylor J.P.. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015; 163:123–133. PubMed PMC
Wang J., Choi J.M., Holehouse A.S., Lee H.O., Zhang X., Jahnel M., Maharana S., Lemaitre R., Pozniakovsky A., Drechsel D.et al. .. A molecular grammar governing the driving forces for phase separation of Prion-like RNA binding proteins. Cell. 2018; 174:688–699. PubMed PMC
Clarke J.P., Thibault P.A., Salapa H.E., Levin M.C.. A comprehensive analysis of the role of hnRNP A1 function and dysfunction in the pathogenesis of neurodegenerative disease. Front. Mol. Biosci. 2021; 8:659610. PubMed PMC
Dreyfuss G., Kim V.N., Kataoka N.. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 2002; 3:195–205. PubMed
Geissler R., Simkin A., Floss D., Patel R., Fogarty E.A., Scheller J., Grimson A.. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1. Genes Dev. 2016; 30:1070–1085. PubMed PMC
Geuens T., Bouhy D., Timmerman V.. The hnRNP family: insights into their role in health and disease. Hum. Genet. 2016; 135:851–867. PubMed PMC
Beyer A.L., Christensen M.E., Walker B.W., LeStourgeon W.M.. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell. 1977; 11:127–138. PubMed
Barnett S.F., Friedman D.L., LeStourgeon W.M.. The C proteins of hela 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2. Mol. Cell. Biol. 1989; 9:492–498. PubMed PMC
Rech J.E., LeStourgeon W.M., Flicker P.F.. Ultrastructural morphology of the hnRNP C protein tetramer. J. Struct. Biol. 1995; 114:77–83. PubMed
Burd C.G., Swanson M.S., Gorlach M., Dreyfuss G.. Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1, and C2 proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:9788–9792. PubMed PMC
Barnett S.F., Northington S.J., LeStourgeon W.M.. Isolation and in vitro assembly of nuclear ribonucleoprotein particles and purification of core particle proteins. Methods Enzymol. 1990; 181:293–307. PubMed
Lothstein L., Arenstorf H.P., Chung S.Y., Walker B.W., Wooley J.C., LeStourgeon W.M.. General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J. Cell Biol. 1985; 100:1570–1581. PubMed PMC
Samarina O.P., Krichevskaya A.A., Georgiev G.P.. Nuclear ribonucleoprotein particles containing messenger ribonucleic acid. Nature. 1966; 210:1319–1322. PubMed
Samarina O.P., Lukanidin E.M., Georgiev G.P.. On the structural organization of the nuclear complexes containing messenger RNA. Biochim. Biophys. Acta. 1967; 142:561–564. PubMed
Lukanidin E.M., Zalmanzon E.S., Komaromi L., Samarina O.P., Georgiev G.P.. Structure and function of informofers. Nat. New Biol. 1972; 238:193–197. PubMed
Samarina O.P. hnRNP particles. Bioessays. 1996; 18:595–601.
Samarina O.P., Lukanidin E.M., Molnar J., Georgiev G.P.. Structural organization of nuclear complexes containing DNA-like RNA. J. Mol. Biol. 1968; 33:251–263. PubMed
Conway G., Wooley J., Bibring T., LeStourgeon W.M.. Ribonucleoproteins package 700 nucleotides of pre-mRNA into a repeating array of regular particles. Mol. Cell. Biol. 1988; 8:2884–2895. PubMed PMC
Chung S.Y., Wooley J.. Set of novel, conserved proteins fold pre-messenger RNA into ribonucleosomes. Proteins. 1986; 1:195–210. PubMed
Siomi H., Dreyfuss G.. A nuclear localization domain in the hnRNP A1 protein. J. Cell Biol. 1995; 129:551–560. PubMed PMC
Domanski M., Molloy K., Jiang H., Chait B.T., Rout M.P., Jensen T.H., LaCava J.. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. BioTechniques. 2012; 0:1–6. PubMed PMC
Barraud P., Allain F.H.. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. J. Biomol. NMR. 2013; 55:119–138. PubMed
Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G.M., Carnemolla B., Orecchia P., Zardi L., Righetti P.G.. Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis. 2004; 25:1327–1333. PubMed
Gunasekera K., Wuthrich D., Braga-Lagache S., Heller M., Ochsenreiter T.. Proteome remodelling during development from blood to insect-form trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics. 2012; 13:556. PubMed PMC
Winzer P., Muller J., Imhof D., Ritler D., Uldry A.C., Braga-Lagache S., Heller M., Ojo K.K., Van Voorhis W.C., Ortega-Mora L.M.et al. .. Neospora caninum: differential proteome of multinucleated complexes induced by the bumped kinase inhibitor BKI-1294. Microorganisms. 2020; 8:801. PubMed PMC
Braga-Lagache S., Buchs N., Iacovache M.I., Zuber B., Jackson C.B., Heller M.. Robust Label-free, quantitative profiling of circulating plasma microparticle (MP) associated proteins. Mol. Cell. Proteomics. 2016; 15:3640–3652. PubMed PMC
Eng J.K., Hoopmann M.R., Jahan T.A., Egertson J.D., Noble W.S., MacCoss M.J.. A deeper look into Comet–implementation and features. J. Am. Soc. Mass. Spectrom. 2015; 26:1865–1874. PubMed PMC
Craig R., Beavis R.C.. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 2003; 17:2310–2316. PubMed
Kim S., Pevzner P.A.. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 2014; 5:5277. PubMed PMC
Tabb D.L., Fernando C.G., Chambers M.C.. MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J. Proteome Res. 2007; 6:654–661. PubMed PMC
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019; 47:D506–D515. PubMed PMC
Choi H., Ghosh D., Nesvizhskii A.I.. Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. J. Proteome Res. 2008; 7:286–292. PubMed
Deutsch E.W., Mendoza L., Shteynberg D., Farrah T., Lam H., Tasman N., Sun Z., Nilsson E., Pratt B., Prazen B.et al. .. A guided tour of the trans-proteomic pipeline. Proteomics. 2010; 10:1150–1159. PubMed PMC
Shteynberg D., Deutsch E.W., Lam H., Eng J.K., Sun Z., Tasman N., Mendoza L., Moritz R.L., Aebersold R., Nesvizhskii A.I.. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics. 2011; 10:M111 007690. PubMed PMC
Nesvizhskii A.I., Aebersold R.. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics. 2005; 4:1419–1440. PubMed
Zybailov B.L., Florens L., Washburn M.P.. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst. 2007; 3:354–360. PubMed
Zhang Y., Wen Z., Washburn M.P., Florens L.. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 2010; 82:2272–2281. PubMed
Ohi M., Li Y., Cheng Y., Walz T.. Negative staining and image classification - Powerful Tools in modern electron microscopy. Biol. Proced. Online. 2004; 6:23–34. PubMed PMC
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC
Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., Hagel P., Sitsel O., Raisch T., Prumbaum D.et al. .. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol. 2019; 2:218. PubMed PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7:e42166. PubMed PMC
Zivanov J., Nakane T., Scheres S.H.W.. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ. 2020; 7:253–267. PubMed PMC
Huang M., Rech J.E., Northington S.J., Flicker P.F., Mayeda A., Krainer A.R., LeStourgeon W.M.. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol. 1994; 14:518–533. PubMed PMC
Choi Y.D., Dreyfuss G.. Monoclonal antibody characterization of the C proteins of heterogeneous nuclear ribonucleoprotein complexes in vertebrate cells. J. Cell Biol. 1984; 99:1997–1204. PubMed PMC
Mattern K.A., van der Kraan I., Schul W., de Jong L., van Driel R.. Spatial organization of four hnRNP proteins in relation to sites of transcription, to nuclear speckles, and to each other in interphase nuclei and nuclear matrices of hela cells. Exp. Cell. Res. 1999; 246:461–470. PubMed
Domanski M., Upla P., Rice W.J., Molloy K.R., Ketaren N.E., Stokes D.L., Jensen T.H., Rout M.P., LaCava J.. Purification and analysis of endogenous human RNA exosome complexes. 2016; 22:1467–1475. PubMed PMC
Choi Y.D., Dreyfuss G.. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl. Acad. Sci. U.S.A. 1984; 81:7471–7475. PubMed PMC
Stark H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 2010; 481:109–126. PubMed
Bruun G.H., Doktor T.K., Borch-Jensen J., Masuda A., Krainer A.R., Ohno K., Andresen B.S.. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biol. 2016; 14:54. PubMed PMC
Konig J., Zarnack K., Rot G., Curk T., Kayikci M., Zupan B., Turner D.J., Luscombe N.M., Ule J.. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010; 17:909–915. PubMed PMC
Li M., Zhuang Y., Batra R., Thomas J.D., Li M., Nutter C.A., Scotti M.M., Carter H.A., Wang Z.J., Huang X.S.et al. .. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:5472–5477. PubMed PMC
Nguyen E.D., Balas M.M., Griffin A.M., Roberts J.T., Johnson A.M.. Global profiling of hnRNP A2/B1-RNA binding on chromatin highlights LncRNA interactions. RNA Biol. 2018; 15:901–913. PubMed PMC
Wiedner H.J., Giudice J.. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 2021; 28:465–473. PubMed PMC
Jain N., Lin H.C., Morgan C.E., Harris M.E., Tolbert B.S.. Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:2206–2211. PubMed PMC
Xu R.M., Jokhan L., Cheng X., Mayeda A., Krainer A.R.. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure. 1997; 5:559–570. PubMed
Lee B.J., Cansizoglu A.E., Suel K.E., Louis T.H., Zhang Z., Chook Y.M.. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell. 2006; 126:543–558. PubMed PMC
Hofweber M., Hutten S., Bourgeois B., Spreitzer E., Niedner-Boblenz A., Schifferer M., Ruepp M.D., Simons M., Niessing D., Madl T.et al. .. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell. 2018; 173:706–719. PubMed
Sun Y., Zhao K., Xia W., Feng G., Gu J., Ma Y., Gui X., Zhang X., Fang Y., Sun B.et al. .. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nat. Commun. 2020; 11:6349. PubMed PMC
Farr S.E., Woods E.J., Joseph J.A., Garaizar A., Collepardo-Guevara R.. Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 2021; 12:2883. PubMed PMC
Gueroussov S., Weatheritt R.J., O’Hanlon D., Lin Z.Y., Narula A., Gingras A.C., Blencowe B.J.. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell. 2017; 170:324–339. PubMed
Ule J., Blencowe B.J.. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell. 2019; 76:329–345. PubMed